概述
I have a datetime attribute:
d = {
'DOB': pd.Series([
datetime.datetime(2014, 7, 9),
datetime.datetime(2014, 7, 15),
np.datetime64('NaT')
], index=['a', 'b', 'c'])
}
df_test = pd.DataFrame(d)
I would like to compute the mean for that attribute. Running mean() causes an error:
TypeError: reduction operation 'mean' not allowed for this dtype
I also tried the solution proposed elsewhere. It doesn't work as running the function proposed there causes
OverflowError: Python int too large to convert to C long
What would you propose? The result for the above dataframe should be equivalent to
datetime.datetime(2014, 7, 12).
解决方案
You can take the mean of Timedelta. So find the minimum value and subtract it from the series to get a series of Timedelta. Then take the mean and add it back to the minimum.
dob = df_test.DOB
m = dob.min()
(m + (dob - m).mean()).to_pydatetime()
datetime.datetime(2014, 7, 12, 0, 0)
One-line
df_test.DOB.pipe(lambda d: (lambda m: m + (d - m).mean())(d.min())).to_pydatetime()
I use the epoch pd.Timestamp(0) instead of min
df_test.DOB.pipe(lambda d: (lambda m: m + (d - m).mean())(pd.Timestamp(0))).to_pydatetime()
最后
以上就是凶狠雪碧为你收集整理的python datatime 平均值_计算python datetime的平均值的全部内容,希望文章能够帮你解决python datatime 平均值_计算python datetime的平均值所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复