I have a datetime attribute:
d = {
'DOB': pd.Series([
datetime.datetime(2014, 7, 9),
datetime.datetime(2014, 7, 15),
np.datetime64('NaT')
], index=['a', 'b', 'c'])
}
df_test = pd.DataFrame(d)
I would like to compute the mean for that attribute. Running mean() causes an error:
TypeError: reduction operation 'mean' not allowed for this dtype
I also tried the solution proposed elsewhere. It doesn't work as running the function proposed there causes
OverflowError: Python int too large to convert to C long
What would you propose? The result for the above dataframe should be equivalent to
datetime.datetime(2014, 7, 12).
解决方案
You can take the mean of Timedelta. So find the minimum value and subtract it from the series to get a series of Timedelta. Then take the mean and add it back to the minimum.
dob = df_test.DOB
m = dob.min()
(m + (dob - m).mean()).to_pydatetime()
datetime.datetime(2014, 7, 12, 0, 0)
One-line
df_test.DOB.pipe(lambda d: (lambda m: m + (d - m).mean())(d.min())).to_pydatetime()
I use the epoch pd.Timestamp(0) instead of min
df_test.DOB.pipe(lambda d: (lambda m: m + (d - m).mean())(pd.Timestamp(0))).to_pydatetime()
最后
以上就是凶狠雪碧最近收集整理的关于python datatime 平均值_计算python datetime的平均值的全部内容,更多相关python内容请搜索靠谱客的其他文章。
发表评论 取消回复