我是靠谱客的博主 开放寒风,最近开发中收集的这篇文章主要介绍java.io.NotSerializableException: org.apache.hadoop.conf.Configuration问题:问题:解决:,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

我想用火花处理一个大文本文件”mydata。txt”(实际文件的大小约为30 gb)。它的记录分隔符是“ |”后跟“
”。因为加载文件(通过“sc.textFile”)的默认记录分隔符是“
”,我将org.apache.hadoop.conf.Configuration的“textinputformat.record.delimiter”属性设置为“ | n”指定记录分隔符:

 

问题:

scala> val data = raw_data.filter(x => x.split(FIELD_SEP).size >= 3)
data: org.apache.spark.rdd.RDD[String] = FilteredRDD[4] at filter at <console>:22

scala> data.collect
org.apache.spark.SparkException: Job aborted due to stage failure: Task not serializable: java.io.NotSerializableException: org.apache.hadoop.conf.Configuration
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1049)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1033)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1031)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1031)
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitMissingTasks(DAGScheduler.scala:772)
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$submitStage(DAGScheduler.scala:715)
    at org.apache.spark.scheduler.DAGScheduler.handleJobSubmitted(DAGScheduler.scala:699)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1203)
    at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
    at akka.actor.ActorCell.invoke(ActorCell.scala:456)
    at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
    at akka.dispatch.Mailbox.run(Mailbox.scala:219)
    at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
    at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
    at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
    at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
    at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)

scala> data.foreach(println)
org.apache.spark.SparkException: Job aborted due to stage failure: Task not serializable: java.io.NotSerializableException: org.apache.hadoop.conf.Configuration
    ...

 

 

问题:

Caused by: java.io.NotSerializableException: org.apache.hadoop.conf.Configuration
    at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1183)
    at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1547)
    at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1508)
    at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1431)
    at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1177)
    at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1547)
    at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1508)
    at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1431)
    at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1177)

解决:

1 .使用Kyro序列化程序注册配置或    

.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")

2。只要将之变量标记为瞬态,这基本上就是告诉火花不要使用闭包。

@transient val conf = new Configuration

 

 

 

 

最后

以上就是开放寒风为你收集整理的java.io.NotSerializableException: org.apache.hadoop.conf.Configuration问题:问题:解决:的全部内容,希望文章能够帮你解决java.io.NotSerializableException: org.apache.hadoop.conf.Configuration问题:问题:解决:所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(63)

评论列表共有 0 条评论

立即
投稿
返回
顶部