复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#include <iostream>
#include <vector>
#include <stack>
#include <queue>
using namespace std;
//结构体定义如下
typedef struct TreeNode{
//权值
int val;
//左右孩子
TreeNode* left, *right;
//构造函数
TreeNode() :left(NULL), right(NULL), val(0){}
TreeNode(int val) :left(NULL), right(NULL), val(val){}
}TreeNode;
//二叉树的四种遍历(先序、中序、后序、层次)
//层次遍历
vector<int> layerTravel(TreeNode* root){
vector<int> res;
if (root == NULL)return res;
queue<TreeNode*> q;
q.push(root);
while (!q.empty()){
//计算当前队列中含有多少元素
int size = q.size();
//从头部依次取出size个元素
for (int i = 0; i < size; i++){
root = q.front();
q.pop();
res.push_back(root->val);
//将下一层的元素塞入队列
if (root->left)q.push(root->left);
if (root->right)q.push(root->right);
}
}
return res;
}
//先序和中序存在极大的相似性
//先序遍历
vector<int> preOrderTravel(TreeNode* root){
vector<int> res;
if (root == NULL)return res;
stack<TreeNode*> s;
while (root || !s.empty()){
while (root){
res.push_back(root->val);
s.push(root);
root = root->left;
}
root = s.top();
s.pop();
root = root->right;
}
return res;
}
//中序遍历
vector<int> inorderTravel(TreeNode* root){
vector<int> res;
if (root == NULL)return res;
stack<TreeNode*>s;
while (root || !s.empty()){
while (root){
s.push(root);
root = root->left;
}
root = s.top();
s.pop();
res.push_back(root->val);
root = root->right;
}
return res;
}
//后续遍历
vector<int> postOrderTravel(TreeNode* root){
vector<int> res;
if (root == NULL)return res;
stack<TreeNode*> s;
s.push(root);
TreeNode* head = root;
while (!s.empty()){
TreeNode* t = s.top();
if (!t->left&&!t->right || t->left == head || t->right == head){
res.push_back(t->val);
s.pop();
head = t;
}
else{
if (t->right)s.push(t->right);
if (t->left)s.push(t->left);
}
}
return res;
}
int main(){
return 0;
}
最后
以上就是花痴寒风最近收集整理的关于C++实现——二叉树的四种遍历(非递归写法)的全部内容,更多相关C++实现——二叉树内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复