我是靠谱客的博主 彪壮草莓,最近开发中收集的这篇文章主要介绍Seurat | 超好用的单细胞测序数据合并(3‘和5‘数据合并)(一),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

写在前面

随着scRNAseq技术的普及,成本的降低,大家可以在公共数据库找到越来越多的datasets,但如何合并这些datasets就成为了一个大问题????,比较推荐的方法包括:????

  • Harmony;
  • rliger;
  • Seurat

我们常见的2种应用场景就是:

  • 3'5'不同datasets的合并;
  • 整合只有部分重叠的datasets,(举个栗子????:全血scRNAseq数据和3'PBMC数据的合并。

???? 在Seurat包中提供了一种叫canonical correlation analysis (CCA)的方法进行合并。

本期我们介绍一下如何通过Seurat包进行3'5'不同datasets整合。????

用到的包

rm(list = ls())
library(Seurat)
library(SeuratDisk)
library(SeuratWrappers)
library(patchwork)
library(harmony)
library(rliger)
library(RColorBrewer)
library(tidyverse)
library(reshape2)
library(ggsci)
library(ggstatsplot)

示例数据

这里我们提供13’ PBMC dataset15’ PBMC dataset。????

matrix_3p <- Read10X_h5("./3p_pbmc10k_filt.h5",use.names = T)
matrix_5p <- Read10X_h5("./5p_pbmc10k_filt.h5",use.names = T)$`Gene Expression`

srat_3p   <- CreateSeuratObject(matrix_3p,project = "pbmc10k_3p")
srat_5p   <- CreateSeuratObject(matrix_5p,project = "pbmc10k_5p")
srat_3p
srat_5p


Note! 5' datset中还有一个assay,即VDJ data。????

线粒体与核糖体基因的计算

这里我们计算一下线粒体基因核糖体基因比例,并进行可视化。????

srat_3p[["percent.mt"]]  <- PercentageFeatureSet(srat_3p, pattern = "^MT-")
srat_3p[["percent.rbp"]] <- PercentageFeatureSet(srat_3p, pattern = "^RP[SL]")
srat_5p[["percent.mt"]]  <- PercentageFeatureSet(srat_5p, pattern = "^MT-")
srat_5p[["percent.rbp"]] <- PercentageFeatureSet(srat_5p, pattern = "^RP[SL]")

3’ dataset可视化 ????

VlnPlot(srat_3p, ncol = 4,
        features = c("nFeature_RNA","nCount_RNA","percent.mt","percent.rbp"))


5’ dataset可视化 ????

VlnPlot(srat_5p, features = c("nFeature_RNA","nCount_RNA","percent.mt","percent.rbp"), ncol = 4)


接着我们看一下有多少基因名是一致的,我们使用的是Cell Ranger进行注释,背景文件为GRCh38-2020A。????

table(rownames(srat_3p) %in% rownames(srat_5p)) 

过滤

这里我们设置一下过滤条件,把死亡的细胞doublets过滤掉。

srat_3p <- subset(srat_3p, subset = nFeature_RNA > 500 & nFeature_RNA < 5000 & percent.mt < 15)
srat_5p <- subset(srat_5p, subset = nFeature_RNA > 500 & nFeature_RNA < 5000 & percent.mt < 10)

合并

6.1 转为list

这里我们写个for循环,方便操作,同时完成Normalization高变基因的选择。????

pbmc_list <- list()
pbmc_list[["pbmc10k_3p"]] <- srat_3p
pbmc_list[["pbmc10k_5p"]] <- srat_5p

for (i in 1:length(pbmc_list)) {
  pbmc_list[[i]] <- NormalizeData(pbmc_list[[i]], verbose = F)
  pbmc_list[[i]] <- FindVariableFeatures(pbmc_list[[i]], selection.method = "vst", nfeatures = 2000, verbose = F)
}

6.2 寻找合并Anchors

这一步耗时较长,16g的内存跑了大概5 min。????

pbmc_anchors <- FindIntegrationAnchors(object.list = pbmc_list, dims = 1:30)


6.3 合并

pbmc_seurat <- IntegrateData(anchorset = pbmc_anchors, dims = 1:30)
rm(pbmc_list)
rm(pbmc_anchors)

合并前后的比较

7.1 查看信息

这个时候我们看一下合并后的pbmc_seurat数据,我们拥有了两个assayintergatedRNA

pbmc_seurat


7.2 合并前

这里可以看到使用Seurat包的CCA方法合并前,PCA结果是明显分离的。

DefaultAssay(pbmc_seurat) <- "RNA"
pbmc_seurat <- NormalizeData(pbmc_seurat, verbose = F)
pbmc_seurat <- FindVariableFeatures(pbmc_seurat, selection.method = "vst", nfeatures = 2000, verbose = F)
pbmc_seurat <- ScaleData(pbmc_seurat, verbose = F)
pbmc_seurat <- RunPCA(pbmc_seurat, npcs = 30, verbose = F)
pbmc_seurat <- RunUMAP(pbmc_seurat, reduction = "pca", dims = 1:30, verbose = F)

### 可视化
p1 <- DimPlot(pbmc_seurat,reduction = "umap") + 
  scale_color_npg()+
  plot_annotation(title = "10k 3' PBMC and 10k 5' PBMC cells, before integration")

p2 <- DimPlot(pbmc_seurat, reduction = "umap", split.by = "orig.ident") +
  scale_color_npg()+
  NoLegend()

p1 + p2


7.3 合并后

合并后,PCA结果完美重叠。

DefaultAssay(pbmc_seurat) <- "integrated"
pbmc_seurat <- ScaleData(pbmc_seurat, verbose = F)
pbmc_seurat <- RunPCA(pbmc_seurat, npcs = 30, verbose = F)
pbmc_seurat <- RunUMAP(pbmc_seurat, reduction = "pca", dims = 1:30, verbose = F)

### 可视化
p1 <- DimPlot(pbmc_seurat, reduction = "umap") + 
  scale_color_npg()+
  plot_annotation(title = "10k 3' PBMC and 10k 5' PBMC cells, after integration")

p2 <- DimPlot(pbmc_seurat, reduction = "umap", split.by = "orig.ident") +
  scale_color_npg()+
  NoLegend()

p1 + p2

聚类

8.1 寻找clusters

合并完成后,我么就可以开始聚类,寻找clusters了。

pbmc_seurat <- FindNeighbors(pbmc_seurat, dims = 1:30, k.param = 10, verbose = F)
pbmc_seurat <- FindClusters(pbmc_seurat, verbose = F)

ncluster <- length(unique(pbmc_seurat[[]]$seurat_clusters))

mycol <- colorRampPalette(brewer.pal(8, "Set2"))(ncluster)

DimPlot(pbmc_seurat,
        cols = mycol,
        label = T,repel = T) + 
  NoLegend()


8.2 具体查看及可视化

我们看下各个clusters在两个datasets各有多少细胞。

count_table <- table(pbmc_seurat@meta.data$seurat_clusters, pbmc_seurat@meta.data$orig.ident)
count_table

#### 可视化
count_table %>% 
  as.data.frame() %>% 
  ggbarstats(x = Var2, 
             y = Var1,
             counts = Freq)+
  scale_fill_npg()


螃蟹
最后祝大家早日不卷!~

需要示例数据的小伙伴,在公众号回复Merge获取吧!

点个在看吧各位~ ✐.ɴɪᴄᴇ ᴅᴀʏ 〰

最后

以上就是彪壮草莓为你收集整理的Seurat | 超好用的单细胞测序数据合并(3‘和5‘数据合并)(一)的全部内容,希望文章能够帮你解决Seurat | 超好用的单细胞测序数据合并(3‘和5‘数据合并)(一)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(40)

评论列表共有 0 条评论

立即
投稿
返回
顶部