我是靠谱客的博主 舒服音响,最近开发中收集的这篇文章主要介绍python计算复合材料层合板ABD刚度矩阵、预测层合板强度理论部分计算逻辑与实现逻辑层合板ABD刚度矩阵计算层合板强度预测最后的最后,觉得挺不错的,现在分享给大家,希望可以做个参考。
概述
鄙人不才,在学校的时候没有学python,复合材料力学也是一知半解,后来工作的时候遇到了需要计算复合材料层合板ABD刚度矩阵的内容,然后恰好在学习python,于是花时间编写了下预测这方面的内容,然后后期还编写了通过Tsai-Wu,Tsai-Hill失效准则预测层合板强度的模块,不过代码编的比较烂,后期会学习python项目管理,然后封装好。
备注:由于本人代码水平有限,现有代码还需要更改,主要是模块间的数据读入和数据传递比较混乱,但模块的计算能力没有问题,各位观众老爷在学习的时候可以参考《复合材料力学》相关书籍的经典层合板理论对照阅读。
@Time : 2018-12-28
@Author : Allen Pen
@E-mail : shengyutou@outlook.com
目录
- 理论部分
- 复合材料基础理论
- 单层板的宏观力学分析
- 层合板的宏观力学分析
- 单层板的细观力学分析
- 计算逻辑与实现逻辑
- 计算逻辑
- 层合板ABD刚度矩阵计算
- 层合板强度预测
- 最后的最后
# 文件读取 这里需要进行数据读入操作,可以通过GUI填入,或者是读取.txt文档。或者是通过细观力学计算得来。
理论部分
待更新。
复合材料基础理论
待更新。
单层板的宏观力学分析
层合板的宏观力学分析
单层板的细观力学分析
待更新。
计算逻辑与实现逻辑
计算逻辑
# 计算单层板弹性常数
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018-12-28
# @Author : Allen Pen
# @E-mail : shengyutou@outlook.com
import numpy as np
import numpy.linalg as lg
from CLPTC.calculator.input_file_reader import ply_properties,mat_properties
class Lamina():
'''
注意:
正轴 -- 与铺层纤维方向相同的方向为正轴向,以1,2,3方向表示
偏轴 -- 一般为层合板自然轴定义的坐标系,以x,y,z表示,相对于铺层的坐标系
铺层角 -- 偏轴x转至正轴1的夹角,逆时针转向为正
泊松比 -- 泊松比使用国外的书和软件的定义方式,即ν_12=-ε_2/ε_1 ,ν_21=-ε_1/ε_2
使用nu12,nu12(OptiStruct) = nuxy(ANSYS) = ν_12(国外教材)=ν_1(复合材料力学)=ν_21(复合材料力学)=-ε_2/ε_1
matid material id
e1 Young Modulus in direction 1
e2 Young Modulus in direction 2
g12 in-plane shear modulus
nu21 Poisson's ratio 21,nu21=-ε2/ε1
nu12 Poisson's ratio 12: use formula nu21/e1 = nu12/e2
st1,st2 allowable tensile stresses for directions 1 and 2
sc1,sc2 allowable compressive stresses for directions 1 and 2
ss12 allowable in-plane stress for shear
strn allowable strain for direction 1
plyid id of the composite lamina
t ply thickness
theta ply angle
S (单层的)正轴柔量矩阵
Q (单层的)正轴模量矩阵
T_stress 应力转换矩阵
T_strain 应变转换矩阵
S_offaxis (单层的)偏轴柔量矩阵
Q_offaxis (单层的)偏轴模量矩阵
Sij compliance component 柔量分量
Qij modulus component 模量分量
'''
def __init__(self):
self.matid = None
self.plyid = None
self.t = None
self.theta = None
self.e1 = None
self.e2 = None
self.g12 = None
self.nu21 = None
self.nu12 = None
self.st1 = None
self.st2 = None
self.sc1 = None
self.sc2 = None
self.ss12 = None
self.strn = None
self.S = None
self.Q = None
self.T_stress = None
self.T_strain = None
self.S_offaxis= None
self.Q_offaxis= None
self.lamina_Ex = None
self.lamina_Ey = None
self.lamina_Gxy = None
self.lamina_nuxy= None
self.laminates= []
self.cos = None
self.cos2t = None
self.sin = None
self.sin2t = None
def calc_SQ(self):
'''
计算单层的正轴刚度
:return: 只返回 S、Q,中间的s11等变量无法访问
'''
e1 = self.e1
e2 = self.e2
nu21 = self.nu21
nu12 = self.nu12
g12 = self.g12
s11 = 1 / e1
s22 = 1 / e2
s66 = 1 / g12
s12 = -nu12 / e2
s21 = -nu21 / e1
s16 = s61 = s26 = s62 = 0
qm = (1 - nu21*nu12)
q11 = e1/qm
q22 = e2/qm
q66 = g12
q12 = nu12 * e1/qm
q21 = nu21 * e2/qm
q16 = q61 = q26 = q62 = 0
self.S = np.array(
[[s11,s12,s16],
[s21,s22,s26],
[s61,s62,s66]],dtype = float)
self.Q = np.array(
[[q11,q12,q16],
[q21,q22,q26],
[q61,q62,q66]],dtype = float)
# 计算各单层的偏轴刚度
theta = self.theta
self.cos = np.cos( np.deg2rad( theta ) )
self.sin = np.sin( np.deg2rad( theta ) )
# self.cos2t = np.cos( np.deg2rad( 2*self.theta ) )
# self.sin2t = np.sin( np.deg2rad( 2*self.theta ) )
cos = self.cos
sin = self.sin
cos2 = cos**2
sin2 = sin**2
sincos = sin*cos
# cos2t = self.cos2t
# sin2t = self.sin2t
# 应力转换矩阵,用于将偏轴应力转换至正轴应力
self.T_stress = np.array(
[[ cos2, sin2, 2*sincos],
[ sin2, cos2, -2*sincos],
[-sincos,sincos, cos2-sin2]],dtype=float)
# 应变转换矩阵,用于将偏轴应变转换至正轴应变
self.T_strain = np.array(
[[ cos2, sin2, sincos],
[ sin2, cos2, -sincos],
[-2*sincos,2*sincos, cos2-sin2]],dtype=float)
# 计算偏轴刚度矩阵
self.Q_offaxis = np.dot(np.dot(lg.inv(self.T_stress), self.Q), self.T_strain)
self.S_offaxis = np.dot(np.dot(lg.inv(self.T_strain), self.S), self.T_stress)
# 铺层等效的工程弹性常数
self.lamina_Ex = 1/self.S_offaxis[0,0]
self.lamina_Ey = 1/self.S_offaxis[1,1]
self.lamina_Gxy = 1/self.S_offaxis[2,2]
self.lamina_nuxy= -self.lamina_Ex*self.S_offaxis[0,1]
def Get_lamina_prop(plyid):
lamina_prop = Lamina()
#铺层属性
lamina_prop.matid = ply_properties['材料索引值'][plyid]
lamina_prop.t = ply_properties['厚度'][plyid]
lamina_prop.theta = ply_properties['铺层角'][plyid]
# 铺层的材料属性
lamina_prop.e1 = mat_properties['E1'][lamina_prop.matid]
lamina_prop.e2 = mat_properties['E2'][lamina_prop.matid]
lamina_prop.nu21 = mat_properties['nu21'][lamina_prop.matid]
lamina_prop.g12 = mat_properties['G12'][lamina_prop.matid]
lamina_prop.nu12 = lamina_prop.nu21/lamina_prop.e1*lamina_prop.e2
lamina_prop.calc_SQ()
return lamina_prop
层合板ABD刚度矩阵计算
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018-12-28
# @Author : Allen Pen
import numpy as np
import numpy.linalg as lg
import matplotlib.pyplot as plt
from CLPTC.calculator.lamina import Get_lamina_prop #从
from CLPTC.calculator.input_file_reader import total_ply_num,z_coord_dict,z_total,load_info,ply_properties,mat_properties
class Laminate():
"""
equiv_e1 equivalent laminate modulus in 1 direction
equiv_e2 equivalent laminate modulus in 2 direction
equiv_g12 equivalent laminate shear modulus in 12 direction
equiv_nu21 equivalent laminate Poisson ratio in 21 direction
equiv_nu12 equivalent laminate Poisson ratio in 12 direction
plyid id of the composite lamina
plies list of plies
plyts ply thicknesses for this laminate
t total thickness of the laminate
A 面内刚度系数矩阵
B 耦合刚度系数矩阵
D 弯曲刚度系数矩阵
ABD ABD刚度矩阵
用于计算柔度矩阵的中间变量
A_temp = A^-1
B_temp = -A^-1*B
H_temp = B*A^-1
D_temp = -B*A^-1*B+D
A_inverted 面内柔度系数矩阵
B_inverted 耦合柔度系数矩阵
H_inverted 一般情况下 H_inverted = B_inverted
D_inverted 弯曲柔度系数矩阵
ABHD_inverted ABD柔度矩阵
epsilon_0 板中面应变
K 板中面翘曲率
"""
def __init__(self):
self.plyid= None
self.plies= None
self.plyts= None
self.t = None
self.equiv_e1 = None
self.equiv_e2 = None
self.equiv_g12 = None
self.equiv_nu21 = None
self.equiv_nu12 = None
self.A = None
self.B = None
self.D = None
self.ABD = None
self.A_temp = None
self.B_temp = None
self.H_temp = None
self.D_temp = None
self.A_inverted = None
self.B_inverted = None
self.H_inverted = None
self.D_inverted = None
self.ABHD_inverted = None
self.epsilon_K_offaxis = None
self.epsilon_offaxis_0 = None #板中面应变
self.K = None #板中面翘曲率
self.load_info = None #用于在最大强度比小于1的情况下更新载荷
self.N_M = None #层合板当前能承受的载荷
self.count = 0 #用于层合板失效层数的统计
_ = self.init_build() #在类实例化时,将ABD 刚度阵、柔度阵,以及层的应变计算出来
# 设置np数组输出的精度,注意,数组依然按float64储存
np.set_printoptions(formatter={'float': '{: 10.3f}'.format})
def calc_ABD(self):
"""
用于计算A,B,D刚度矩阵,以及A',B',D'柔度矩阵
ref. 沈观林.《复合材料力学》
:return:
ABD A,B,D刚度矩阵
ABHD_inverted A',B',D'柔度矩阵
"""
self.A = np.zeros([3,3], dtype=float)
self.B = np.zeros([3,3], dtype=float)
self.D = np.zeros([3,3], dtype=float)
self.ply_prop ={}
for plyid in range(1,total_ply_num + 1):
ply = Get_lamina_prop(plyid)
#将计算后的偏轴刚度、应变转换矩阵储存起来
self.ply_prop['Q_'+str(plyid)] = ply.Q
self.ply_prop['T_strain_' +str(plyid)] = ply.T_strain
self.ply_prop['T_stress_'+str(plyid)] = ply.T_stress
zk = z_coord_dict['z' + str(plyid)]
zk_1 = z_coord_dict['z' + str(plyid-1)]
for i in range(3):
for j in range(3):
self.A[i][j] += ply.Q_offaxis[i][j]*(zk - zk_1 )
self.B[i][j] +=1/2.*ply.Q_offaxis[i][j]*(zk**2 - zk_1**2)
self.D[i][j] +=1/3.*ply.Q_offaxis[i][j]*(zk**3 - zk_1**3)
part1 = np.concatenate([self.A, self.B], axis=1)
part2 = np.concatenate([self.B, self.D], axis=1)
self.ABD = np.concatenate([part1, part2], axis=0)
def calc_ABHD_inverted(self):
# 计算ABD'柔度矩阵
self.ABHD_inverted = lg.inv(self.ABD)
def calc_equivalent_modulus(self):
"""
用于计算层合板等效的工程弹性常数
:return:
equiv_e1 等效E1
equiv_e2 等效E2
equiv_nu21 等效nu21
equiv_nu12 等效nu12
equiv_g12 等效G12
"""
AI = lg.inv(self.ABD)
a11, a12, a22, a33 = AI[0,0], AI[0,1], AI[1,1], AI[2,2]
self.equiv_e1 = 1./(z_total*a11)
self.equiv_e2 = 1./(z_total*a22)
self.equiv_nu21 = - a12 / a11
self.equiv_nu12 = - a12 / a22
self.equiv_g12 = 1./(z_total*a33)
层合板强度预测
待更新。
最后的最后
欢迎大家点赞、评论及转载,转载请注明出处!
如果觉得我帮助到了你:
为我打call,不如为我打款!
最后
以上就是舒服音响为你收集整理的python计算复合材料层合板ABD刚度矩阵、预测层合板强度理论部分计算逻辑与实现逻辑层合板ABD刚度矩阵计算层合板强度预测最后的最后的全部内容,希望文章能够帮你解决python计算复合材料层合板ABD刚度矩阵、预测层合板强度理论部分计算逻辑与实现逻辑层合板ABD刚度矩阵计算层合板强度预测最后的最后所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复