概述
Example 1
def optimize_training_parameters(self, n):
# data
from_timestamp = self.min_timestamp
to_timestamp = self.min_timestamp + datetime.timedelta(days=365) + datetime.timedelta(hours=1)
train_timestamps, train_values = self.load_monitor_data(from_timestamp, to_timestamp, "1")
train_data = np.array(train_values)[:, 0:5]
# parameters
nu = np.linspace(start=1e-5, stop=1e-2, num=n)
gamma = np.linspace(start=1e-6, stop=1e-3, num=n)
opt_diff = 1.0
opt_nu = None
opt_gamma = None
fw = open("training_param.csv", "w")
fw.write("nu,gamma,diffn")
for i in range(len(nu)):
for j in range(len(gamma)):
classifier = svm.OneClassSVM(kernel="rbf", nu=nu[i], gamma=gamma[j])
classifier.fit(train_data)
label = classifier.predict(train_data)
p = 1 - float(sum(label == 1.0)) / len(label)
diff = math.fabs(p-nu[i])
if diff < opt_diff:
opt_diff = diff
opt_nu = nu[i]
opt_gamma = gamma[j]
fw.write(",".join([str(nu[i]), str(gamma[j]), str(diff)]) + "n")
fw.close()
return opt_nu, opt_gamma
Example 2
def plot_sent_trajectories(sents, decode_plot):
font = {'family' : 'normal',
'size' : 14}
matplotlib.rc('font', **font)
i = 0
l = ["Portuguese","Catalan"]
axes = plt.gca()
#axes.set_xlim([xmin,xmax])
axes.set_ylim([-1,1])
for sent, enc in zip(sents, decode_plot):
if i==2: continue
i += 1
#times = np.arange(len(enc))
times = np.linspace(0,1,len(enc))
plt.plot(times, enc, label=l[i-1])
plt.title("Hidden Node Trajectories")
plt.xlabel('timestep')
plt.ylabel('trajectories')
plt.legend(loc='best')
plt.savefig("final_tests/cr_por_cat_hidden_cell_trajectories", bbox_inches="tight")
plt.close()
Example 3
def plot_interpolation(orderx,ordery):
s = PseudoSpectralDiscretization2D(orderx,XMIN,XMAX,
ordery,YMIN,YMAX)
Xc,Yc = s.get_x2d()
x = np.linspace(XMIN,XMAX,100)
y = np.linspace(YMIN,YMAX,100)
Xf,Yf = np.meshgrid(x,y,indexing='ij')
f_coarse = f(Xc,Yc)
f_interpolator = s.to_continuum(f_coarse)
f_num = f_interpolator(Xf,Yf)
plt.pcolor(Xf,Yf,f_num)
cb = plt.colorbar()
cb.set_label('interpolated function',fontsize=16)
plt.xlabel('x')
plt.ylabel('y')
for postfix in ['.png','.pdf']:
name = 'orthopoly_interpolated_function'+postfix
if USE_FIGS_DIR:
name = 'figs/' + name
plt.savefig(name,
bbox_inches='tight')
plt.clf()
Example 4
def create_reference_image(size, x0=10., y0=-3., sigma_x=50., sigma_y=30., dtype='float64',
reverse_xaxis=False, correct_axes=True, sizey=None, **kwargs):
"""
Creates a reference image: a gaussian brightness with elliptical
"""
inc_cos = np.cos(0./180.*np.pi)
delta_x = 1.
x = (np.linspace(0., size - 1, size) - size / 2.) * delta_x
if sizey:
y = (np.linspace(0., sizey-1, sizey) - sizey/2.) * delta_x
else:
y = x.copy()
if reverse_xaxis:
xx, yy = np.meshgrid(-x, y/inc_cos)
elif correct_axes:
xx, yy = np.meshgrid(-x, -y/inc_cos)
else:
xx, yy = np.meshgrid(x, y/inc_cos)
image = np.exp(-(xx-x0)**2./sigma_x - (yy-y0)**2./sigma_y)
return image.astype(dtype)
Example 5
def draw_laser_frustum(pose, zmin=0.0, zmax=10, fov=np.deg2rad(60)):
N = 30
curve = np.vstack([(
RigidTransform.from_rpyxyz(0, 0, rad, 0, 0, 0) * np.array([[zmax, 0, 0]]))
for rad in np.linspace(-fov/2, fov/2, N)])
curve_w = pose * curve
faces, edges = [], []
for cpt1, cpt2 in zip(curve_w[:-1], curve_w[1:]):
faces.extend([pose.translation, cpt1, cpt2])
edges.extend([cpt1, cpt2])
# Connect the last pt in the curve w/ the current pose,
# then connect the the first pt in the curve w/ the curr. pose
edges.extend([edges[-1], pose.translation])
edges.extend([edges[0], pose.translation])
faces = np.vstack(faces)
edges = np.vstack(edges)
return (faces, edges)
Example 6
def recall_from_IoU(IoU, samples=500):
"""
plot recall_vs_IoU_threshold
"""
if not (isinstance(IoU, list) or IoU.ndim == 1):
raise ValueError('IoU needs to be a list or 1-D')
iou = np.float32(IoU)
# Plot intersection over union
IoU_thresholds = np.linspace(0.0, 1.0, samples)
recall = np.zeros_like(IoU_thresholds)
for idx, IoU_th in enumerate(IoU_thresholds):
tp, relevant = 0, 0
inds, = np.where(iou >= IoU_th)
recall[idx] = len(inds) * 1.0 / len(IoU)
return recall, IoU_thresholds
# =====================================================================
# Generic utility functions for object recognition
# ---------------------------------------------------------------------
Example 7
def draw_bboxes(vis, bboxes, texts=None, ellipse=False, colored=True):
if not len(bboxes):
return vis
if not colored:
cols = np.tile([240,240,240], [len(bboxes), 1])
else:
N = 20
cwheel = colormap(np.linspace(0, 1, N))
cols = np.vstack([cwheel[idx % N] for idx, _ in enumerate(bboxes)])
texts = [None] * len(bboxes) if texts is None else texts
for col, b, t in zip(cols, bboxes, texts):
if ellipse:
cv2.ellipse(vis, ((b[0]+b[2])/2, (b[1]+b[3])/2), ((b[2]-b[0])/2, (b[3]-b[1])/2), 0, 0, 360,
color=tuple(col), thickness=1)
else:
cv2.rectangle(vis, (b[0], b[1]), (b[2], b[3]), tuple(col), 2)
if t:
annotate_bbox(vis, b, title=t)
return vis
Example 8
def plotTimeMultiHistogram(parseTimes, hashTimes, compileTimes, filename): # times in ms
bins = np.linspace(0, 5000, 50)
data = np.vstack([parseTimes, hashTimes, compileTimes]).T
fig, ax = plt.subplots()
plt.hist(data, bins, alpha=0.7, label=['parsing', 'hashing', 'compiling'], color=[parseColor, hashColor, compileColor])
plt.legend(loc='upper right')
plt.xlabel('time [ms]')
plt.ylabel('#files')
fig.savefig(filename)
fig, ax = plt.subplots()
boxplot_data = [[i/1000 for i in parseTimes], [i/1000 for i in hashTimes], [i/1000 for i in compileTimes]] # times to s
plt.boxplot(boxplot_data, 0, 'rs', 0, [5, 95])
plt.xlabel('time [s]')
plt.yticks([1, 2, 3], ['parsing', 'hashing', 'compiling'])
#lgd = ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) # legend on the right
fig.savefig(filename[:-4] + '_boxplots' + GRAPH_EXTENSION)
Example 9
def initwithsize(self, curshape, dim):
# DIM-dependent initialization
if self.dim != dim:
if self.zerox:
self.xopt = zeros(dim)
else:
self.xopt = compute_xopt(self.rseed, dim)
if hasattr(self, 'param') and self.param: # not self.param is None
tmp = self.param
else:
tmp = self.condition
self.scales = tmp ** linspace(0, 1, dim)
# DIM- and POPSI-dependent initialisations of DIM*POPSI matrices
if self.lastshape != curshape:
self.dim = dim
self.lastshape = curshape
self.arrxopt = resize(self.xopt, curshape)
Example 10
def initwithsize(self, curshape, dim):
# DIM-dependent initialisation
if self.dim != dim:
if self.zerox:
self.xopt = zeros(dim)
else:
self.xopt = compute_xopt(self.rseed, dim)
self.scales = (self.condition ** .5) ** linspace(0, 1, dim)
# DIM- and POPSI-dependent ini
最后
以上就是闪闪百褶裙为你收集整理的python np linspace_Python numpy.linspace() 使用实例的全部内容,希望文章能够帮你解决python np linspace_Python numpy.linspace() 使用实例所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复