概述
KNN算法--基本分类和回归方法。
1. 是什么
给定一个训练数据集(test_set)
对新的输入实例
在训练集(train_set)中找到与该实例距离最近的k个数据集
这k个数据集的大多数属于哪个类型的,那么这个实例就是那个分类。 如图一所示
举一个不恰当的例子:如果你的身边都是百万富翁,那你的资产大概率也不少。
2. k值的选取以及影响
2.1 k值过小,导致过拟合
如图所示,当k值选择最小为1时,五边形直接属于黑色,但你从感官上看五边形应该属于方块啊。这就是过拟合。
2.2 k值过大,模型简单,预测失误
极端的例子:选取整个训练集的长度为k值。你会发现五边形永远属于个数最多的类别。
2.3 特征归一化
首先我们先来看这样一个例子: 5个训练样本:
| 序号 | 身高 | 体重 | 分类 | | :---: | :---: | :---: | :---: | | 1 | 179 | 42 | 男 | | 2 | 178 | 43 | 男 | | 3 | 165 | 36 | 女 | | 4 | 177 | 42 | 男 | | 5 | 160 | 35 | 女 |
给出测试样本: 6(167,43)
选定k=3 计算距离:
6-1=$$sqrt{145}$$
6-2=$$sqrt{121}$$
6-3=$$sqrt{53}$$
6-4=$$sqrt{101}$$
6-5=$$sqrt{103}$$
由此发现 最近的为3,4,5。因为两女一男,我们推断样本属于女。 但是你会发现一个女性的脚为43码远远小于男性的脚为43码,
这里就是因为身高的数值比脚的数值大或者说是量纲大。因此导致身高的重要性远远大于脚码。 这也就是归一化的原因。
数据归一化的处理方式有很多,比如:0-1标准化,Z-score标准化,Sigmoid压缩法。 这里介绍一个比较简单的0-1标准化,公式:
MIN为改特征下的最小值,如身高的MIN为160;
MAX为该特征下的最大值,如身高的MAX为179
$$x_normalization=frac{x-MIN}{MAX-MIN}$$
上面的测试数据经过0-1标准归一化变为
| 序号 | 身高 | 体重 | 分类 | | :---: | :---: | :---: | :---: | | 1 | 1 | 0.875 | 男 | | 2 | 0.95 | 1 | 男 | | 3 | 0.26 | 0.125 | 女 | | 4 | 0.89 | 0.875 | 男 | | 5 | 0 | 0 | 女 |
举例 身高:
1=$$frac{179-160}{179-160}$$=1 2=$$frac{179-160}{179-160}$$=0.95
体重
1=1=$$frac{42-35}{43-35}$$=0.875
距离的度量
主要包括以下几种度量方式
案例-预测癌症
预测癌症
最后
以上就是缥缈太阳为你收集整理的KNN算法--基本分类和回归方法的全部内容,希望文章能够帮你解决KNN算法--基本分类和回归方法所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复