概述
文章链接
https://gitee.com/fakerlove/python
4. 数据库处理
0. 简介
0.1 安装
pip install numpy pandas
或者
pip3 install numpy pandas
1. numpy
1.1 基本属性
import numpy as np
array=[[1,2,3],[4,5,6]]
arr=np.array(array)
# 打印矩阵
print(arr)
# 维度 --二维矩阵
print(arr.ndim)
# 矩阵的维度
print(arr.shape)
# 矩阵元素的个数
print(arr.size)
import numpy as np
# 一维
arr1=np.array([1,3,4])
print(arr1)
# 定义一个二维
array=[[1,2,3],[4,5,6]]
# 这边类型有int16,int32,int64,float32,float64
arr=np.array(array,dtype=np.float64)
print(arr.dtype)
# 定义一个全部为0 的数组
a=np.zeros(5)
print("定义一个全部为0 的数组",a)
# 定义一个二维矩阵
a=np.zeros((2,4),dtype=np.int64)
print(a)
# 定义一个三维举证
a=np.zeros((2,4,1),dtype=np.int32)
print(a)
# 定义全为1的
a=np.ones(3)
print("定义全为1的",a)
a=np.empty(3)
print("生成空的矩阵",a)
a=np.arange(3)
print(a)
# 生成3*4 的二维矩阵
a=np.arange(12).reshape(3,4)
print("生成3*4 的二维矩阵",a)
1.2 基础运算
一维
import numpy as np
a=np.array([10,20,30,40])
b=np.arange(4)
print(a,b)
# 加法运算
c=a+b
print(c)
# 平方
c=b**2
print(c)
# 平方,一样的效果
c=b*b
print(c)
# 对每个元素进行tan
print(np.tan(a))
# 对每个元素进行比较
print(a<30)
print(a==30)
二维
import numpy as np
a=np.array([[1,2],[3,4]])
b=np.arange(4).reshape((2,2))
c=np.arange(4).reshape((2,2))
print(a)
print(b)
# 每个元素自己相乘
print(a*b)
# 矩阵相乘
c_dot=np.dot(a,b)
print(c_dot)
# 矩阵相乘的另一种写法
print(a.dot(b))
# 随机生成一个矩阵
a=np.random.random((2,4))
print(a)
print("所有元素求和",np.sum(c_dot))
print("所有元素的最小值",np.min(c_dot))
# 1 表示行,0 表示列
print("每一行的最小值",np.min(c_dot,axis=1))
print("每一列的最小值",np.min(c_dot,axis=0))
print("所有元素的最大值",np.max(c_dot))
print("所有元素求和",np.sum(c_dot,axis=1))
import numpy as np
A=np.arange(2,14).reshape((3,4))
print(A)
# 最小值的索引值
print(np.argmin(A))
# 最大值的索引值
print(np.argmax(A))
# 所有值的平均值
print(np.mean(A))
# 所有值的平均值
print(np.average(A))
# 逐渐累加的过程
print(np.cumsum(A))
# 中位数
print(np.median(A))
# 累差,每两个数之间的差
print(np.diff(A))
#逐行进行排序
A_1=np.arange(14,2,-1).reshape((3,4))
print(A_1)
print(np.sort(A_1))
# 矩阵的转置
print(np.transpose(A))
# 截取矩阵
print(np.clip(A,5,9))
# 平均值
print(np.mean(A,axis=0))
# 对行进行平均值
print(np.mean(A,axis=1))
1.3 索引
import numpy as npA=np.arange(3,15).reshape(3,4)print(A)print("打印的是一行",A[2])print("打印一个数字",A[1][1])print("打印一个数字",A[2,1])print("打印范围",A[2,1:3])# 打印列for column in A.T: print(column) # 返回一个arrayprint(A.flatten())# 打印所有数字for item in A.flat: print(item)
1.4 array 合并
- np.append()
- np.concatenate()
- np.stack()
- np.hstack()
- np.vstack()
- np.dstack()
其中最泛用的是第一个和第二个。第一个可读性好,比较灵活,但是占内存大。第二个则没有内存占用大的问题。
parameters | introduction |
---|---|
arr | 待合并的数组的复制(特别主页是复制,所以要多耗费很多内存) |
values | 用来合并到上述数组复制的值。如果指定了下面的参数axis 的话,则这些值必须和arr 的shape一致(shape[axis]之外都相等),否则的话,则没有要求。 |
axis | 要合并的轴 |
import numpy as npA=np.array([1,1,1])B=np.array([2,2,2])C=np.vstack((A,B))# 1 为列进行合并D=np.append([[1,2,3]],[[3,4,54]],axis=1)# 左右合并F=np.hstack((A,B))# 垂直合并print(C)print(A.shape)print(D)print(F)# 实现变成数列的print(A[:,np.newaxis])print(np.vstack(A))print(np.concatenate((A,B,A,B),axis=0))
concatenate
parameters | introduction |
---|---|
*arrays | 这些数组除了在待合并的axis(默认为axis=0)上之外,必须具有相同的shape |
axis | 待合并的轴,默认为0 |
1.5 array 分割
import numpy as npA=np.arange(12).reshape((3,4))print(A)# 分成两列print(np.split(A,2,axis=1))# 分成三列print(np.split(A,[1,1,2],axis=1))# 水平分割print(np.hsplit(A,2))# 垂直分割print(np.vsplit(A,3))a = np.arange(24).reshape(2,3,4)print(a)#深度分割print(np.dsplit(a,2))
1.6 拷贝
import numpy as npa=np.arange(4,dtype=float)print(a)# 浅拷贝,当原来的array 修改时,b 也跟着修改b=aprint(b is a)a[0]=0.3print(a)print(b)# 深度拷贝b=a.copy()a[0]=0.55print(a)print(b)b[0]=12print(a)print(b)
2.pandas
2.1 基本介绍
import pandas as pdimport numpy as nps=pd.Series([1,3,6,np.nan,44,1])print(s)dates=pd.date_range("20210701",periods=6)print(dates)df=pd.DataFrame(np.random.randn(6,4),index=dates,columns=["a","b","c","d"])print(df)# 可以使用字典的方式进行df2=pd.DataFrame({"A":1,"B":"kk","C":np.array([1,2,3])})print(df2)# 打印每一列的属性print(df2.dtypes)# 打印列的值print(df2.columns)print(df2.T)# 进行排序print(df2.sort_index(axis=1,ascending=False))print(df2.sort_index(axis=0,ascending=False))# 对于矩阵中的值进行排序print(df2.sort_values(by="C",ascending=False))
2.2 选择数据
import pandas as pdimport numpy as npdates=pd.date_range("20210703",periods=6)df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns={"A","B","C","D"})print(df["A"])print(df.A)print("0-3 行",df[0:3])print(df["20210703":"20210705"])# loc 是纯标签的筛选print(df.loc["20210704"])print(df.loc["20210704",["A","B"]])# iloc 是纯数字的筛选print(df.iloc[3,1])print(df.iloc[3:5,1:3])# ix 是混合的筛选print(df.ix[:3,["A","C"]])
2.3 设置值
import pandas as pdimport numpy as npdates=pd.date_range("20210703",periods=6)df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns={"A","B","C","D"})# 选择标签,然后设置值df.iloc[2,2]=1111print(df)df.loc["20210703","B"]=2222print(df)df.B[df.A>8]=0print(df)df["E"]=np.nanprint(df)df["F"]=[1,2,3,4,5,6]print(df)
2.4 处理丢失数据
import pandas as pdimport numpy as npdates=pd.date_range("20210703",periods=6)df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates,columns={"A","B","C","D"})df["E"]=np.nandf.iloc[0,1]=np.nandf.iloc[1,2]=np.nanprint(df)# 如果一行中,有nan ,就全部丢掉,这边是全部丢掉print(df.dropna(axis=0,how="any"))# 丢掉列,某一列全部是nan,才全部丢掉print(df.dropna(axis=1,how="all"))# 填充其中的nanprint(df.fillna(value=0))print(df.isnull())# 返回是否有一个nanprint(np.any(df.isnull())==True)
2.5 导入导出数据
api 网址
https://pandas.pydata.org/docs/reference/io.html
样例
import pandas as pdimport numpy as np# 首先准备一个csvdata=pd.read_csv(r"C:UsersbnDesktop1.csv")print(data)data.to_pickle("1.pickle")
2.6 合并
concat
import pandas as pdimport numpy as npdf1=pd.DataFrame(np.ones((3,4))*0,columns=["a","b","c","d"])df2=pd.DataFrame(np.ones((3,4))*1,columns=["a","b","c","d"])df3=pd.DataFrame(np.ones((3,4))*2,columns=["a","b","c","d"])print(df1)print(df2)res=pd.concat([df1,df2,df3],axis=0)print(res)df1=pd.DataFrame(np.ones((3,4))*0,columns=["a","b","c","d"],index=[1,2,3])df2=pd.DataFrame(np.ones((3,4))*1,columns=["b","c","d","e"],index=[2,3,4])res=pd.concat([df1,df2])# 多余的部分会用NaN 连接print(res)# 寻找相同的列res=pd.concat([df1,df2],join="inner",ignore_index=True)print(res)# 还有append数据df1=pd.DataFrame(np.ones((3,4))*0,columns=["a","b","c","d"])df2=pd.DataFrame(np.ones((3,4))*1,columns=["a","b","c","d"])df3=pd.DataFrame(np.ones((3,4))*2,columns=["a","b","c","d"])res=df1.append([df2,df3])print(res)
merge
import pandas as pdimport numpy as npleft=pd.DataFrame({"key":["K0","K1","K2","K3"], "A":["A0","A1","A2","A3"], "B":["B0","B1","B2","B3"], })right=pd.DataFrame({"key":["K0","K1","K2","K3"], "C":["C0","C1","C2","C3"], "D":["D0","D1","D2","D3"], })print(left)print(right)res=pd.merge(left,right,on="key")print(res)
2.7 打印
import matplotlib.pyplot as pltimport pandas as pdimport numpy as npdata=pd.Series(np.random.randn(1000),index=np.arange(1000))data=data.cumsum()data.plot()plt.show()# 矩阵的数据data=pd.DataFrame(np.random.randn(1000,4), index=np.arange(1000),columns=list("ABCD"))print(data.head())data=data.cumsum()data.plot()plt.show()
3.matplotllib
3.1 基本用法
import matplotlib.pyplot as pltimport pandas as pdimport numpy as npx=np.linspace(-1,1,50)y=2*x+1plt.plot(x,y)plt.show()
3.2 figure 用法
每一个figure 中,就会有不同的图片
import matplotlib.pyplot as pltimport pandas as pdimport numpy as npx=np.linspace(-1,1,50)y1=2*x+1y2=x**2plt.figure()plt.plot(x,y1)plt.show()# 展示第二张图# 一个figure 就是一张图plt.figure()plt.plot(x,y2,color="red",linewidth=2.0,linestyle="--")plt.show()
3.3 设置坐标轴
import matplotlib.pyplot as pltimport pandas as pdimport numpy as npx=np.linspace(-3,3,50)y1=2*x+1y2=x**2plt.figure()plt.xlim((-1,2))plt.ylim((-2,3))plt.xlabel("t am x")plt.ylabel("t am y")new_ticks=np.linspace(-1,2,5)plt.xticks(new_ticks)plt.yticks([-2,-1.8,-1,1,3],["really bad","bad","normal","good","really god"])plt.plot(x,y1)plt.show()plt.figure()# 移动x 轴或者y 轴ax=plt.gca()ax.spines["right"].set_color("none")ax.spines["top"].set_color("none")ax.xaxis.set_ticks_position("bottom")ax.yaxis.set_ticks_position("left")ax.spines["bottom"].set_position(("data",0))ax.spines["left"].set_position(("data",0))plt.plot(x,y2,color="red",linewidth=2.0,linestyle="--")plt.show()
3.4 图例
import matplotlib.pyplot as pltimport pandas as pdimport numpy as npx=np.linspace(-3,3,50)y1=2*x+1y2=x**2# 这边命名一定要加, ,为l1, 返回值不加逗号会报错l1,=plt.plot(x,y1,label="up")l2,=plt.plot(x,y2,label="down",linestyle="--",linewidth=2,color="red")plt.legend(handles=[l1,l2,],labels=["aaa","bbbb"],loc="best")plt.show()
3.5 标注
s 为注释文本内容
xy 为被注释的坐标点
xytext 为注释文字的坐标位置
xycoords 参数如下:
- figure points:图左下角的点
- figure pixels:图左下角的像素
- figure fraction:图的左下部分
- axes points:坐标轴左下角的点
- axes pixels:坐标轴左下角的像素
- axes fraction:左下轴的分数
- data:使用被注释对象的坐标系统(默认)
- polar(theta,r):if not native ‘data’ coordinates t
weight 设置字体线型
{‘ultralight’, ‘light’, ‘normal’, ‘regular’, ‘book’, ‘medium’, ‘roman’, ‘semibold’, ‘demibold’, ‘demi’, ‘bold’, ‘heavy’, ‘extra bold’, ‘black’}
color 设置字体颜色
- {‘b’, ‘g’, ‘r’, ‘c’, ‘m’, ‘y’, ‘k’, ‘w’}
- ‘black’,'red’等
- [0,1]之间的浮点型数据
- RGB或者RGBA, 如: (0.1, 0.2, 0.5)、(0.1, 0.2, 0.5, 0.3)等
arrowprops #箭头参数,参数类型为字典dict
- width:箭头的宽度(以点为单位)
- headwidth:箭头底部以点为单位的宽度
- headlength:箭头的长度(以点为单位)
- shrink:总长度的一部分,从两端“收缩”
- facecolor:箭头颜色
bbox给标题增加外框 ,常用参数如下:
- boxstyle:方框外形
- facecolor:(简写fc)背景颜色
- edgecolor:(简写ec)边框线条颜色
- edgewidth:边框线条大小
import matplotlib.pyplot as pltimport numpy as npx = np.arange(0, 6)y = x * xplt.plot(x, y, marker='o')for xy in zip(x, y): plt.annotate("(%s,%s)" % xy, xy=xy, xytext=(-20, 10), textcoords='offset points')plt.show()
例二
import matplotlib.pyplot as pltimport numpy as npx = np.arange(0, 6)y = x * xplt.plot(x, y, marker='o')for xy in zip(x, y): plt.annotate("(%s,%s)" % xy, xy=xy, xytext=(-20, 10), textcoords='offset points', bbox=dict(boxstyle='round,pad=0.5', fc='yellow', ec='k', lw=1, alpha=0.5)plt.show()
例三
import matplotlib.pyplot as pltimport pandas as pdimport numpy as npx=np.linspace(-3,3,50)y1=2*x+1y2=x**2plt.scatter(x,y1)plt.figure(num=1,figsize=(8,5))ax=plt.gca()ax.spines["right"].set_color("none")ax.spines["top"].set_color("none")ax.xaxis.set_ticks_position("bottom")ax.yaxis.set_ticks_position("left")ax.spines["bottom"].set_position(("data",0))ax.spines["left"].set_position(("data",0))x0=1y0=2*x0+1plt.scatter(x0,y0,s=50,color='b')plt.plot([x0,x0],[y0,0],"k--",lw=2.5)# xytext 就是文字偏离点的位置plt.annotate(r"$2x+1=%s$" % y0, xy=(x0,y0), xycoords="data", xytext=(+30,-30), textcoords="offset points", fontsize=6, arrowprops=dict(arrowstyle="->",connectionstyle="arc3,rad=.2") )plt.text(-3.7,3,r"$hi ,mu alpha$",fontdict={"size":16,"color":"r"})plt.show()
3.6 能见度
import matplotlib.pyplot as pltimport pandas as pdimport numpy as npx=np.linspace(-3,3,50)y1=2*x+1y2=x**2plt.plot(x,y1)plt.figure(num=1,figsize=(8,5))plt.ylim(-2,2)ax=plt.gca()ax.spines["right"].set_color("none")ax.spines["top"].set_color("none")ax.xaxis.set_ticks_position("bottom")ax.yaxis.set_ticks_position("left")ax.spines["bottom"].set_position(("data",0))ax.yaxis.set_ticks_position("left")ax.spines["left"].set_position(("data",0))for label in ax.get_xticklabels()+ax.get_yticklabels(): label.set_fontsize(12) label.set_bbox(dict(facecolor="red",edgecolor="None",alpha=0.7)) plt.show()
3.7 各种图
3.7.1 散点图
import matplotlib.pyplot as pltimport pandas as pdimport numpy as npn=1024X=np.random.normal(0,1,n)Y=np.random.normal(0,1,n)T=np.arctan2(Y,X)# 生成plt.scatter(X,Y,s=75,c=T,alpha=0.5)plt.xlim((-1.5,1.5))plt.ylim((-1.5,1.5))plt.xticks(())plt.yticks(())plt.show()
3.7.2 柱状图
import matplotlib.pyplot as pltimport pandas as pdimport numpy as npn=12X=np.arange(n)Y1=(1-X/float(n))*np.random.uniform(0.5,1.0,n)Y2=(1-X/float(n))*np.random.uniform(0.5,1.0,n)plt.bar(X,+Y1,facecolor="#9999ff",edgecolor="white")plt.bar(X,-Y2,facecolor="#ff9999",edgecolor="white")for x,y in zip(X,Y1): plt.text(x,y+0.05,"%.2f" %y,ha='center',va="bottom")for x,y in zip(X,Y2): plt.text(x,-y-0.05,"%.2f" %y,ha='center',va="top") plt.xlim(-.5,n)plt.xticks(())plt.ylim(-1.25,1.25)plt.yticks(())plt.show()
3.7.3 等高线
import numpy as npimport matplotlib.pyplot as plt#建立步长为0.01,即每隔0.01取一个点step = 0.01x = np.arange(-10,10,step)y = np.arange(-10,10,step)#也可以用x = np.linspace(-10,10,100)表示从-10到10,分100份#将原始数据变成网格数据形式X,Y = np.meshgrid(x,y)#写入函数,z是大写Z = X**2+Y**2#设置打开画布大小,长10,宽6#plt.figure(figsize=(10,6))#填充颜色,f即filledplt.contourf(X,Y,Z)#画等高线plt.contour(X,Y,Z)plt.show()
例二
import numpy as npimport pandas as pdimport matplotlib.pyplot as plt # 计算x,y坐标对应的高度值def f(x, y): return (1-x/2+x**5+y**3) * np.exp(-x**2-y**2)# 生成x,y的数据n = 256x = np.linspace(-3, 3, n)y = np.linspace(-3, 3, n) # 把x,y数据生成mesh网格状的数据,因为等高线的显示是在网格的基础上添加上高度值X, Y = np.meshgrid(x, y) # 填充等高线plt.contourf(X, Y, f(X, Y),8, alpha=0.75,cmap=plt.cm.hot)# 添加等高线C = plt.contour(X, Y, f(X, Y), 8,colors="black")plt.clabel(C, inline=True, fontsize=12)# 显示图表plt.show()
3.8 图
3.8.1 图片
import numpy as npimport pandas as pdimport matplotlib.pyplot as plta=np.array([0.31,0.36,0.42,0.365,0.459,0.525,0.4237,0.5250,0.6515]).reshape(3,3)plt.imshow(a,interpolation="nearest",cmap="bone",origin="upper")# 添加图像plt.colorbar()plt.xticks(())plt.yticks(())plt.show()
3.8.2 3D 图像
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3D fig=plt.figure()ax=Axes3D(fig)X=np.arange(-4,4,0.25)Y=np.arange(-4,4,0.25)X,Y=np.meshgrid(X,Y)R=np.sqrt(X**2+Y**2)Z=np.sin(R)ax.plot_surface(X,Y,Z,rstride=1,cstride=1,cmap=plt.get_cmap("rainbow"))ax.contourf(X,Y,Z,zdir='z',offset=-2,cmap="rainbow")ax.set_zlim(-2,2)plt.show()
3.8.3 多图合一
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltplt.figure()plt.subplot(2,1,1)plt.plot([0,1],[0,1])plt.subplot(2,3,4)plt.plot([0,1],[0,1])plt.subplot(235)plt.plot([0,1],[0,1])plt.subplot(236)plt.plot([0,1],[0,4])plt.show()
例二
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport matplotlib.gridspec as gridspecplt.figure()# 第一种方法ax1=plt.subplot2grid((3,3),(0,0),colspan=3,rowspan=1)ax1.plot([1,2],[1,2])ax1.set_title("title")ax2=plt.subplot2grid((3,3),(1,0),colspan=2,rowspan=1)ax2.plot([1,2],[1,2])ax3=plt.subplot2grid((3,3),(1,2),colspan=1,rowspan=2)ax3.plot([1,2],[1,2])ax4=plt.subplot2grid((3,3),(2,0),colspan=1,rowspan=1)ax4.plot([1,2],[1,2])ax5=plt.subplot2grid((3,3),(2,1),colspan=1,rowspan=1)ax5.plot([1,2],[1,2])plt.show()## 第二种方法plt.figure()gs=gridspec.GridSpec(3,3)ax1=plt.subplot(gs[0,:])ax2=plt.subplot(gs[1,:2])ax3=plt.subplot(gs[1:,2])ax4=plt.subplot(gs[-1,0])ax5=plt.subplot(gs[-1,-2])plt.show()# 第三种方法plt.figure()f,((ax11,ax22),(ax21,ax22))=plt.subplots(2,2,sharex=True,sharey=True)ax11.scatter([1,2],[1,3])plt.show()
3.8.4 图中图
[x:y]为对列表取坐标为x到y的值,左边为闭区间取得到,右边为开区间取不到。
[x:y:z]为对列表取坐标为x到y的值,每间隔z个取1个值,同样为左闭右开,可以认为[x:y]是[x:y:z]的特例,其中z取1。
也可以输入负数:
[:-1]为剔除列表最后一个数字。
[::-1]为从列表最后一个开始取(即逆序),可以用a[::-1]取a的逆序。
[::-2]为从列表最后一个开始取(即逆序),每间隔2个取一次。
>>> a = [i for i in range(10)]>>> a[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]>>> a[0:3][0, 1, 2]>>> a[0:3:1][0, 1, 2]>>> a[0:3:2][0, 2]>>> a[0:-1][0, 1, 2, 3, 4, 5, 6, 7, 8]>>> a[0:0:-1][]>>> a[::-1][9, 8, 7, 6, 5, 4, 3, 2, 1, 0]>>> a[::-2][9, 7, 5, 3, 1]
例子
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport matplotlib.gridspec as gridspecfig=plt.figure()x=[1,2,3,4,5,6,7,8]y=[1,3,4,3,6,4,5,1]left,bottom,width,height=0.1,0.1,0.8,0.8ax1=fig.add_axes([left,bottom,width,height])ax1.plot(x,y,'r')ax1.set_xlabel("x")ax1.set_ylabel("y")ax1.set_title("title")left,bottom,width,height=0.2,0.6,0.25,0.25ax2=fig.add_axes([left,bottom,width,height])ax2.plot(y,x,'b')ax2.set_xlabel("x")ax2.set_ylabel("y")ax2.set_title("titleinside 1")plt.axes([0.6,0.2,0.25,0.25])plt.plot(y[::-1],x,'g')plt.xlabel("x")plt.ylabel("y")plt.title("title inside 2")plt.show()print(y[::-1])
3.9 主次坐标轴
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltx=np.arange(0,10,0.1)y1=0.05*x**2y2=-1*y1fig,ax1=plt.subplots()ax2=ax1.twinx()ax1.plot(x,y1,'g-')ax2.plot(x,y2,'b--')ax1.set_xlabel("X data")ax1.set_ylabel("Y1",color='g')ax2.set_ylabel("Y2",color='b')plt.show()
3.10 动画
import numpy as npimport matplotlibimport matplotlib.pyplot as pltimport matplotlib.animation as animation # 指定渲染环境%matplotlib notebook# %matplotlib inline def update_points(num): ''' 更新数据点 ''' point_ani.set_data(x[num], y[num]) return point_ani, x = np.linspace(0, 2*np.pi, 100)y = np.sin(x) fig = plt.figure(tight_layout=True)plt.plot(x,y)point_ani, = plt.plot(x[0], y[0], "ro")plt.grid(ls="--")# 开始制作动画ani = animation.FuncAnimation(fig, update_points, np.arange(0, 100), interval=100, blit=True) # ani.save('sin_test2.gif', writer='imagemagick', fps=10)plt.show()
import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom matplotlib import animation %matplotlib notebookfig,ax=plt.subplots()def animate(i): line.set_ydata(np.sin(x+i/100)) return line,def init(): line.set_ydata(np.sin(x)) return line,x=np.arange(0,2*np.pi,0.01)line,=ax.plot(x,np.sin(x))ani=animation.FuncAnimation(fig=fig, func=animate, frames=100, init_func=init, interval=20, blit=False)plt.show()
最后
以上就是友好哈密瓜为你收集整理的python教程-4.数据处理numpy-pandas4. 数据库处理0. 简介1. numpy2.pandas3.matplotllib的全部内容,希望文章能够帮你解决python教程-4.数据处理numpy-pandas4. 数据库处理0. 简介1. numpy2.pandas3.matplotllib所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复