我是靠谱客的博主 等待酸奶,这篇文章主要介绍python数据科学包(七)—— matplotlib实战之绘制球员能力图和股票K线图1.球员能力图2. 股票K线图,现在分享给大家,希望可以做个参考。

1.球员能力图

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties font = FontProperties(fname=r'C:WindowsFontsSIMSUN.ttc', size=12) ability_label = [u'进攻', u'防守', u'盘带', u'速度', u'体力', u'射术'] ability_size = 6 # 随机生成球员数据 player = { 'M': np.random.randint(size=ability_size, low=10, high=99), 'N': np.random.randint(size=ability_size, low=10, high=99), 'H': np.random.randint(size=ability_size, low=10, high=99), 'Q': np.random.randint(size=ability_size, low=10, high=99) } # 生成角度值,各个角度一样 theta = np.linspace(0, 2 * np.pi, 6, endpoint=False) # 追加一个值使得首尾连线 theta = np.append(theta, theta[0]) # 追加一个值使得首尾连线 player['M'] = np.append(player['M'], player['M'][0]) player['N'] = np.append(player['N'], player['N'][0]) player['H'] = np.append(player['H'], player['H'][0]) player['Q'] = np.append(player['Q'], player['Q'][0]) plt.style.use('ggplot') ax1 = plt.subplot(221, projection='polar') ax2 = plt.subplot(222, projection='polar') ax3 = plt.subplot(223, projection='polar') ax4 = plt.subplot(224, projection='polar') # 坐标系:ax,坐标角度:theta,球员数据:player,球员名字:p_name,显示颜色:color def set_ax(ax, theta, player, p_name, color): ax.fill(theta, player, color, alpha=0.3) ax.set_xticks(theta) ax.set_xticklabels(ability_label, y=-0.05, fontproperties=font) ax.set_title(p_name, fontproperties=font, color=color, size=20) ax.set_yticks([]) set_ax(ax1, theta, player['M'], '球员A', 'r') set_ax(ax2, theta, player['N'], '球员B', 'g') set_ax(ax3, theta, player['H'], '球员C', 'b') set_ax(ax4, theta, player['Q'], '球员D', 'y') plt.show()

在这里插入图片描述

2. 股票K线图

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os import pandas as pd import matplotlib.pyplot as plt import mpl_finance as mpf from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() # 设置总体样式 plt.style.use("ggplot") # 数据来源 datadir = 'yahoo-data' fname = '002001.csv' data = pd.read_csv(os.path.join(datadir, fname), index_col='Date', parse_dates=True) # 单独取出volume数据绘图使用 vol = data['Volume'] # 设置两个图的位置 left, width = 0.1, 0.8 rect_vol = [left, 0.1, width, 0.3] rect_main = [left, 0.46, width, 0.5] # 创建画布 fig = plt.figure() # 添加两个坐标轴 ax_vol = fig.add_axes(rect_vol) ax_main = fig.add_axes(rect_main) # 填充volume图 ax_vol.fill_between(vol.index, vol.values, color='y') # 设置x轴显示样式 plt.setp(ax_vol.get_xticklabels(), rotation=30, horizontalalignment='right') # 替换timestamp to float main_data = [] for d in data.reset_index().values: d[0] = d[0].timestamp() main_data.append((d[0], d[1], d[2], d[3], d[4])) print(main_data) # 绘制蜡烛图 mpf.candlestick_ohlc(ax_main, main_data, width=30000, colorup='r', colordown='g') plt.xticks([]) plt.show()

在这里插入图片描述

最后

以上就是等待酸奶最近收集整理的关于python数据科学包(七)—— matplotlib实战之绘制球员能力图和股票K线图1.球员能力图2. 股票K线图的全部内容,更多相关python数据科学包(七)——内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(63)

评论列表共有 0 条评论

立即
投稿
返回
顶部