我是靠谱客的博主 寂寞马里奥,最近开发中收集的这篇文章主要介绍E. Cyclic Components,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

点击打开链接

You are given an undirected graph consisting of n vertices and m

edges. Your task is to find the number of connected components which are cycles.

Here are some definitions of graph theory.

An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex a

is connected with a vertex b, a vertex b is also connected with a vertex a

). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices.

Two vertices u

and v belong to the same connected component if and only if there is at least one path along edges connecting u and v

.

A connected component is a cycle if and only if its vertices can be reordered in such a way that:

  • the first vertex is connected with the second vertex by an edge,
  • the second vertex is connected with the third vertex by an edge,
  • ...
  • the last vertex is connected with the first vertex by an edge,
  • all the described edges of a cycle are distinct.

A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices.

There are 6
connected components, 2 of them are cycles: [7,10,16] and [5,11,9,15]

.
Input

The first line contains two integer numbers n

and m ( 1n2105, 0m2105

) — number of vertices and edges.

The following m

lines contains edges: edge i is given as a pair of vertices vi, ui ( 1vi,uin, uivi). There is no multiple edges in the given graph, i.e. for each pair ( vi,ui) there no other pairs ( vi,ui) and ( ui,vi

) in the list of edges.

Output

Print one integer — the number of connected components which are also cycles.

Examples
Input
5 4
1 2
3 4
5 4
3 5
Output
1
Input
17 15
1 8
1 12
5 11
11 9
9 15
15 5
4 13
3 13
4 3
10 16
7 10
16 7
14 3
14 4
17 6
Output
2
Note

In the first example only component [3,4,5]

is also a cycle.

The illustration above corresponds to the second example.

题意:给你n个点,m条边,问其中环的个数

分析:1、环的定义是每个点的度为二,也就是不能有多余的分支

            2、dfs找到同一个集合的点,然后判断所有点的度是否为2,来判断是否成环

           3、判断点的度可以用邻接表中每个点对应的大小

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;
#include <vector>
vector<int> g[200010];
vector<int> di;
int vis[200010]={0};
void dfs(int x)
//找到同一个集合的点
{
vis[x]=1;
//避免重复查找
di.push_back(x);
//存储同一个集合的点
for(int i=0;i<g[x].size();i++)
//遍历对应的邻接表
{
if(vis[g[x][i]]==0)
dfs(g[x][i]);
}
}
int main()
{
int n,m,x,y,i,j,cnt=0;
scanf("%d%d",&n,&m);
for(i=0;i<m;i++)
{
scanf("%d%d",&x,&y);
g[x].push_back(y);
//存储邻接表
g[y].push_back(x);
}
for(i=1;i<=n;i++)
{
if(!vis[i])
{
di.clear();
//清空存储仓
dfs(i);
for(j=0;j<di.size();j++)
//判断是否成环,所有点的度均为2
{
if(g[di[j]].size()!=2)
break;
}
if(j==di.size())
cnt++;
}
}
printf("%dn",cnt);
return 0;
}

最后

以上就是寂寞马里奥为你收集整理的E. Cyclic Components的全部内容,希望文章能够帮你解决E. Cyclic Components所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(44)

评论列表共有 0 条评论

立即
投稿
返回
顶部