概述
容斥原理是一种重要的组合数学方法,可以让你求解任意大小的集合,或者计算复合事件的概率。
定理:
在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
德摩根(De Morgan)定理
若A和B是集合U的子集,则
原理:
1。如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数 。
(A∪B = A+B - A∩B)
2。如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元 素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
(A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C)
应用:
一个简单的排列问题
由0到9的数字组成排列,要求第一个数大于1,最后一个数小于8,一共有多少种排列?
我们可以来计算它的逆问题,即第一个元素<=1或者最后一个元素>=8的情况。
我们设第一个元素<=1时有X组排列,最后一个元素>=8时有Y组排列。那么通过容斥原理来解决就可以写成:
经过简单的组合运算,我们得到了结果:
然后被总的排列数10!减,就是最终的答案了。
2. (0,1,2)序列问题
长度为n的由数字0,1,2组成的序列,要求每个数字至少出现1次,这样的序列有多少种?
同样的,我们转向它的逆问题。也就是不出现这些数字的序列 不出现其中某些数字的序列。
我们定义Ai(i=0…2)表示不出现数字i的序列数,那么由容斥原理,我们得到该逆问题的结果为:
可以发现每个Ai的值都为2^n(因为这些序列中只能包含两种数字)。而所有的两两组合都为1(它们只包含1种 数字)。最后,三个集合的交集为0。(因为它不包含数字,所以不存在)
要记得我们解决的是它的逆问题,所以要用总数减掉,得到最终结果:
方程整数解问题
给出一个方程:
其中。
求这个方程的整数解有多少组。
我们先不去理会xi<=8的条件,来考虑所有正整数解的情况。这个很容易用组合数来求解,我们要把20个元素分成6组,也就 是添加5块“夹板”,然后在25个位置中找5块“夹板”的位置。
然后通过容斥原理来讨论它的逆问题,也就是x>=9时的解。
我们定义Ak为xk>=9并且其他xi>=0时的集合,同样我们用上面的添加“夹板”法来计算Ak的大小,因为有9个位置已经 被xk所利用了,所以:
然后计算两个这样的集合Ak、Ap的交集:
因为所有x的和不能超过20,所以三个或三个以上这样的集合时是不能同时出现的,它们的交集都为0。最后我们用总数剪 掉用容斥原理所求逆问题的答案,就得到了最终结果:
求指定区间内与n互素的数的个数:
给出整数n和r。求区间[1;r]中与n互素的数的个数。
去解决它的逆问题,求不与n互素的数的个数。
考虑n的所有素因子pi(i=1…k)
在[1;r]中有多少数能被pi整除呢?它就是:
然而,如果我们单纯将所有结果相加,会得到错误答案。有些数可能被统计多次(被好几个素因子整除)。所以,我们要 运用容斥原理来解决。
我们可以用2^k的算法求出所有的pi组合,然后计算每种组合的pi乘积,通过容斥原理来对结果进行加减处理。
关于此问题的最终实现:
- int solve (int n, int r) {
- vector<int> p;
- for (int i=2; i*i<=n; ++i)
- if (n % i == 0) {
- p.push_back (i);
- while (n % i == 0)
- n /= i;
- }
- if (n > 1)
- p.push_back (n);
- int sum = 0;
- for (int msk=1; msk<(1<<p.size()); ++msk) {
- int mult = 1,
- bits = 0;
- for (int i=0; i<(int)p.size(); ++i)
- if (msk & (1<<i)) {
- ++bits;
- mult *= p[i];
- }
- int cur = r / mult;
- if (bits % 2 == 1)
- sum += cur;
- else
- sum -= cur;
-
- }
- return r - sum;
- }
求在给定区间内,能被给定集合至少一个数整除的数个数
给出n个整数ai和整数r。求在区间[1;r]中,至少能被一个ai整除的数有多少。
解决此题的思路和上题差不多,计算ai所能组成的各种集合(这里将集合中ai的最小公倍数作为除数)在区间中满足的数的个数,然后利用容 斥原理实现加减。
此题中实现所有集合的枚举,需要2^n的复杂度,求解lcm需要O(nlogr)的复杂度。
能满足一定数目匹配的字符串的个数问题
给出n个匹配串,它们长度相同,其中有一些’?’表示待匹配的字母。然后给出一个整数k,求能正好匹配k个匹配串的字符串的个数。更进一 步,求至少匹配k个匹配串的字符串的个数。
首先我们会发现,我们很容易找到能匹配所有匹配串的字符串。只需要对比所有匹配串,去在每一列中找出现的字母(或者这一列全是’?’,或 者这一列出现了唯一的字母,否则这样的字符串就存在),最后所有字母组成的单词即为所求。
现在我们来学习如何解决第一个问题:能正好匹配k个匹配串的字符串。
我们在n个匹配串中选出k个,作为集合X,统计满足集合X中匹配的字符串数。求解这个问题时应用容斥原理,对X的所有超集进行运算,得到 每个X集合的结果:
此处f(Y)代表满足匹配集合Y的字符串数。
如果我们将所有的ans(X)相加,就可以得到最终结果:
这样,就得到了一个复杂度的解法。
这个算法可以作一些改进,因为在求解ans(X)时有些Y集合是重复的。
回到利用容斥原理公式可以发现,当选定一个Y时,所有 中X的结果都是相同的,其符号都为。所以可以用如下公式求解:
这样就得到了一个复杂度的解法。
现在我们来求解第二个问题:能满足至少k个匹配的字符串有多少个。
显然的,我们可以用问题一的方法来计算满足k到n的所有结果。问题一的结论依然成立,不同之处在于这个问题中的X不是大小都为k的,而是>=k的所有集合。
如此进行计算,最后将f(Y)作为另一个因子:将所有的ans做和,有点类似二项式展开:
在《具体数学》( Graham, Knuth, Patashnik. "Concrete Mathematics" [1998] )中,介绍了一个著名的关于二项式系数的公式:
根据这个公式,可以将前面的结果进行化简:
那么,对于这个问题,我们也得到了一个的解法:
路径的数目问题
在一个的方格阵中,有k个格子是不可穿越的墙。一开始在格子(1,1)(最左下角的格子)中有一个机器人。这个机器人只能向上或向右行进,最后它将到达 位于格子(n,m)的笼子里,其间不能经过障碍物格子。求一共有多少种路线可以到达终点。
为了方便区分所有障碍物格子,我们建立坐标系,用(x,y)表示格子的坐标。
首先我们考虑没有障碍物的时候:也就是如何求从一个点到另一个点的路径数。如果从一个点在一个方向要走x个格子,在另一个方向要走y个格子,那么通过简单的 组合原理可以得知结果为:
现在来考虑有障碍物时的情况,我们可以利用容斥原理:求出至少经过一个障碍物时的路径数。
对于这个例子,你可以枚举所有障碍物的子集,作为需要要经过的,计算经过该集合障碍物的路径数(求从原点到第一个障碍物的路径数、第一个障碍物到第二个障 碍物的路径数…最后对这些路径数求乘积),然后通过容斥原理,对这些结果作加法或减法。
然而,它是一个非多项式的解法,复杂度。下面我们将介绍一个多项式的解法。
我们运用动态规划:令d[i][j]代表从第i个点到第j个点,不经过任何障碍物时的路径数(当然除了i和j)。那么我们总共需要k+2个点,包括k个障碍物点以及起点和终 点。
首先我们算出从i点到j点的所有路径数,然后减掉经过障碍物的那些“坏”的路线。让我们看看如何计算“坏”的路线:枚举i和j之间的所有障碍物点i<l<j,那么从i到j 的“坏”路径数就是所有d[i][l]和d[l][j]的乘积最后求和。再被总路径数减掉就是d[i][j]的结果。
我们已经知道计算总路径数的复杂度为 ,那么该解法的总复杂度为 。
(译注:当然也有O(nm)的dp解法,根据n、m、k的值可以采取适当的解法)
素数四元组的个数问题
给出n个数,从其中选出4个数,使它们的最大公约数为1,问总共有多少中取法。
我们解决它的逆问题:求最大公约数d>1的四元组的个数。
运用容斥原理,将求得的对于每个d的四元组个数的结果进行加减。
其中deg(d)代表d的质因子个数,f(d)代表四个数都能被d整除的四元组的个数。
求解f(d)时,只需要利用组合方法,求从所有满足被d整除的ai中选4个的方法数。
然后利用容斥原理,统计出所有能被一个素数整除的四元组个数,然后减掉所有能被两个素数整除的四元组个数,再加上被三个素数整除的四元组个数…
和睦数三元组的个数问题
给出一个整数 。选出a, b, c (其中2<=a<b<c<=n),组成和睦三元组,即:
· 或者满足 , ,
·或者满足
首先,我们考虑它的逆问题:也就是不和睦三元组的个数。
然后,我们可以发现,在每个不和睦三元组的三个元素中,我们都能找到正好两个元素满足:它与一个元素互素,并且与另一个元素不互素。
所以,我们只需枚举2到n的所有数,将每个数的与其互素的数的个数和与其不互素的数的个数相乘,最后求和并除以2,就是要求的逆问题的答案。
现在我们要考虑这个问题,如何求与2到n这些数互素(不互素)的数的个数。虽然求解与一个数互素数的个数的解法在前面已经提到过了,但在此 并不合适,因为现在要求2到n所有数的结果,分别求解显然效率太低。
所以,我们需要一个更快的算法,可以一次算出2到n所有数的结果。
在这里,我们可以使用改进的埃拉托色尼筛法。
·首先,对于2到n的所有数,我们要知道构成它的素数中是否有次数大于1的,为了应用容斥原理,我们还有知道它们由多少种不同的素数构成。
对于这个问题,我们定义数组deg[i]:表示i由多少种不同素数构成,以及good[i]:取值true或false,表示i包含素数的次数小于等于1是否成立。
再利用埃拉托色尼筛法,在遍历到某个素数i时,枚举它在2到n范围内的所有倍数,更新这些倍数的deg[]值,如果有倍数包含了多个i,那么就把这个倍数的good[]值赋为false。
·然后,利用容斥原理,求出2到n每个数的cnt[i]:在2到n中不与i互素的数的个数。
回想容斥原理的公式,它所求的集合是不会包含重复元素的。也就是如果这个集合包含的某个素数多于一次,它们不应再被考虑。
所以只有当一个数i满足good[i]=true时,它才会被用于容斥原理。枚举i的所有倍数i*j,那么对于i*j,就有N/i个与i*j同样包含i(素数集合)的数。将这些结果进行加减,符号由deg[i](素数集合的大小)决定。如果deg[i]为奇数,那么我们要用加号,否则用减号。
程序实现:
- int n;
- bool good[MAXN];
- int deg[MAXN], cnt[MAXN];
- long long solve() {
- memset (good, 1, sizeof good);
- memset (deg, 0, sizeof deg);
- memset (cnt, 0, sizeof cnt);
- long long ans_bad = 0;
- for (int i=2; i<=n; ++i) {
- if (good[i]) {
- if (deg[i] == 0) deg[i] = 1;
- for (int j=1; i*j<=n; ++j) {
- if (j > 1 && deg[i] == 1)
- if (j % i == 0)
- good[i*j] = false;
- else
- ++deg[i*j];
- cnt[i*j] += (n / i) * (deg[i]%2==1 ? +1 : -1);
- }
- }
- ans_bad += (cnt[i] - 1) * 1ll * (n - cnt[i] - 1);
- }
- return (n-1) * 1ll * (n-2) * (n-3) / 6 - ans_bad / 2;
- }
最终算法的复杂度为 ,因为对于大部分i都要进行n/i次枚举。
错排问题
我们想要证明如下的求解长度为n序列的错排数的公式:
它的近似结果为:
(此外,如果将这个近似式的结果向其最近的整数舍入,你就可以得到准确结果)
我们定义Ak:在长度为n的序列中,有一个不动点位置为k(1<=k<=n)时的序列集合。
现在我们运用容斥原理来计算至少包含有一个不动点的排列数,要计算这个,我们必须先算出所有Ak、以及它们的交集的排列数。
因为我们知道当有x个不动点时,所有不动点的位置是固定的,而其它点可以任意排列。
用容斥原理对结果进行带入,而从n个点中选x个不动点的组合数为,那么至少包含一个不动点的排列数为:
那么不包含不动点(即错排数)的结果就是:
化简这个式子,我们得到了错排数的准确式和近似式:
(因为括号中是的泰勒展开式的前n+1项)
用这个式子也可以解决一些类似的问题,如果现在求有m个不动点的排列数,那么我们可以对上式进行修改,也就是将括号中的累加到1/n!改成累加到1/(n-m)!。
转载于:https://www.cnblogs.com/MisdomTianYa/p/6581845.html
最后
以上就是明理可乐为你收集整理的容斥原理的全部内容,希望文章能够帮你解决容斥原理所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复