概述
下边是关于猫狗大战代码的解读。
#os模块提供了很多操作系统的功能接口函数
import tensorflow as tf
import os
print(tf.__version__)
#训练集和测试集的位置,本地运行的时候记得修改路径
data_dir = './datasets'
train_cats_dir = data_dir + '/train/cats/'
train_dogs_dir = data_dir + '/train/dogs/'
test_cats_dir = data_dir + '/valid/cats/'
test_dogs_dir = data_dir + '/valid/dogs/'
# 构建训练数据集:建立训练集猫狗图片名字集合的张量
train_cat_filenames = tf.constant([train_cats_dir + filename for filename in os.listdir(train_cats_dir)])
train_dog_filenames = tf.constant([train_dogs_dir + filename for filename in os.listdir(train_dogs_dir)])
#将猫狗的训练集进行拼接
train_filenames = tf.concat([train_cat_filenames, train_dog_filenames], axis=-1)
# cat 0 dog :1 然后进行拼接
train_labels = tf.concat([
tf.zeros(train_cat_filenames.shape, dtype=tf.int32),
tf.ones(train_dog_filenames.shape, dtype=tf.int32)],
axis=-1)
#定义解码函数
def _decode_and_resize(filename, label):
image_string = tf.io.read_file(filename) # 读取原始文件
image_decoded = tf.image.decode_jpeg(image_string) # 解码JPEG图片
image_resized = tf.image.resize(image_decoded, [256, 256]) / 255.0 #进行归一化
return image_resized, label
batch_size = 32
train_dataset = tf.data.Dataset.from_tensor_slices((train_filenames, train_labels))
#使用map来优化数据集传入性能,num_parallel_calls实现并行
train_dataset = train_dataset.map(
map_func=_decode_and_resize,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
# 取出前buffer_size个数据放入buffer,并从其中随机采样,采样后的数据用后续数据替换
train_dataset = train_dataset.shuffle(buffer_size=23000)
train_dataset = train_dataset.repeat(count=3)
train_dataset = train_dataset.batch(batch_size)
train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)
# 构建测试数据集,步骤和上边构建训练集相同
test_cat_filenames = tf.constant([test_cats_dir + filename for filename in os.listdir(test_cats_dir)])
test_dog_filenames = tf.constant([test_dogs_dir + filename for filename in os.listdir(test_dogs_dir)])
test_filenames = tf.concat([test_cat_filenames, test_dog_filenames], axis=-1)
test_labels = tf.concat([
tf.zeros(test_cat_filenames.shape, dtype=tf.int32),
tf.ones(test_dog_filenames.shape, dtype=tf.int32)],
axis=-1)
test_dataset = tf.data.Dataset.from_tensor_slices((test_filenames, test_labels))
test_dataset = test_dataset.map(_decode_and_resize)
test_dataset = test_dataset.batch(batch_size)
#这里我们用子类模型构建神经网络,通过结果我们可以发现测试集的效果并不理想,最主要的原因就是这里的网络结构,
#但是因为我无法使用gpu,所以没法给出其他网络的效果,大家可以自己试试别的经典分类网络如VGG16,Resnet等
class CNNModel(tf.keras.models.Model):
def __init__(self):
super(CNNModel, self).__init__()
self.conv1 = tf.keras.layers.Conv2D(32, 3, activation='relu')
self.maxpool1 = tf.keras.layers.MaxPooling2D()
self.conv2 = tf.keras.layers.Conv2D(32, 5, activation='relu')
self.maxpool2 = tf.keras.layers.MaxPooling2D()
self.flatten = tf.keras.layers.Flatten()
self.d1 = tf.keras.layers.Dense(64, activation='relu')
self.d2 = tf.keras.layers.Dense(2, activation='softmax') #sigmoid 和softmax
def call(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.flatten(x)
x = self.d1(x)
x = self.d2(x)
return x
learning_rate = 0.001
model = CNNModel()
#损失函数
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
#优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
#训练集的评估函数
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
#测试集
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
predictions = model(images)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
def test_step(images, labels):
predictions = model(images)
t_loss = loss_object(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
EPOCHS=10
for epoch in range(EPOCHS):
# 在下一个epoch开始时,重置评估指标
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
for images, labels in train_dataset:
train_step(images, labels)
for test_images, test_labels in test_dataset:
test_step(test_images, test_labels)
template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
print(template.format(epoch + 1,
train_loss.result(),
train_accuracy.result() * 100,
test_loss.result(),
test_accuracy.result() * 100
))
最后
以上就是英勇黑裤为你收集整理的【tensorflow2.0】21.Dataset实战之猫狗大战的全部内容,希望文章能够帮你解决【tensorflow2.0】21.Dataset实战之猫狗大战所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复