我是靠谱客的博主 可靠八宝粥,最近开发中收集的这篇文章主要介绍《百面深度学习》试读 | 系列五:计算广告中的点击率预估问题,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

导言

《百面深度学习》自上市以来,获得了众多读者的关注与支持,一直高居京东计算机与互联网类新书榜单的前列,大家的热情是我们精益求精的源源动力。为了更好地与大家进行分享与交流,我们从书中节选了几个关注度比较高的“热门“知识点,重新加以整理,内容涵盖推荐系统、计算广告、自然语言处理、计算机视觉、视频处理、生成式对抗网络等领域的相关知识,供大家试读。

《百面深度》试读第五篇

[1] COVINGTON P, ADAMS J, SARGIN E. Deep neural networks for YouTube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016: 191–198.

[2] CHENG H-T, KOC L, HARMSEN J, 等. Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016: 7–10.

[3] JUAN Y, ZHUANG Y, CHIN W-S, 等. Field-aware factorization machines for CTR prediction[C]//Proceedings of the 10th ACM Conference on Recommender Systems. ACM, 2016: 43–50.

[4] PAN J, XU J, RUIZ A L, 等. Field-weighted factorization machines for click-through rate prediction in display advertising[C]//Proceedings of the 2018 World Wide Web Conference. International World Wide Web Conferences Steering Committee, 2018: 1349–1357.

[5] GUO H, TANG R, YE Y, 等. DeepFM: A factorization-machine based neural network for CTR prediction[J]. arXiv preprint arXiv:1703.04247, 2017.

[6] ZHOU G, ZHU X, SONG C, 等. Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018: 1059–1068.

[7] LI L, CHU W, LANGFORD J, 等. A contextual-bandit approach to personalized news article recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. ACM, 2010: 661–670.

[8] WALSH T J, SZITA I, DIUK C, 等. Exploring compact reinforcement-learning representations with linear regression[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2009: 591–598.

[9] AGRAWAL S, GOYAL N. Thompson sampling for contextual bandits with linear payoffs[C]//International Conference on Machine Learning. 2013: 127–135.

《百面深度学习》的试读系列的五篇已经放送完毕,和大家说再见啦~试读没有看饱,想要学习更多深度学习的算法和模型以及领域应用,可以即刻下单,看书中135道面试题结合问答,为你呈现深度学习领域的“百面”精彩!

想要获得这本口碑新书吗?在本期评论区留下你的试读系列的读书心得,我们为点赞前两名的朋友准备了精美的签名书籍!

????快来分享你的深度学习体验吧

长按关注Hulu动态

阅读更多《百面》好文

↓ 点击“阅读原文”

跳转购买《百面深度学习》

最后

以上就是可靠八宝粥为你收集整理的《百面深度学习》试读 | 系列五:计算广告中的点击率预估问题的全部内容,希望文章能够帮你解决《百面深度学习》试读 | 系列五:计算广告中的点击率预估问题所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(41)

评论列表共有 0 条评论

立即
投稿
返回
顶部