概述
图 5.1
importmatplotlib.pyplot as pltimportnumpy as npfrom matplotlib.ticker importAutoMinorLocator, MultipleLocator, FuncFormatter
x=np.linspace(0.5, 3.5, 100)
y=np.sin(x)
fig=plt.figure(figsize=(8, 8))
ax=fig.add_subplot(111)
ax.xaxis.set_major_locator(MultipleLocator(1.0))
ax.yaxis.set_major_locator(MultipleLocator(1.0))
ax.xaxis.set_minor_locator(AutoMinorLocator(4))
ax.yaxis.set_minor_locator(AutoMinorLocator(4))defminor_tick(x, pos):if not x%1.0:return ""
return "%.2f"%x
ax.xaxis.set_minor_formatter(FuncFormatter(minor_tick))
ax.tick_params("y", which='major',length=15, width=2.0, colors='r')
ax.tick_params(which='minor', length=5, width=1.0, labelsize=10, labelcolor='0.25')
ax.set_xlim(0,4)
ax.set_ylim(0,2)
ax.plot(x, y, c=(0.25, 0.25, 1.00), lw=2, zorder=10)#ax.plot(x, y, c=(0.25, 0.25, 1.00), lw=2, zorder=0)
ax.grid(linestyle='-', linewidth=0.5, color='r', zorder=0)#ax.grid(linestyle='-', linewidth=0.5, color='r', zorder=10)#ax.grid(linestyle='--', linewidth=0.5, color='0.25', zorder=0)
plt.show()
View Code
-------------------------------------------------------------------------------------
图 5.2
importmatplotlib.pyplot as pltimportnumpy as np
fig=plt.figure(facecolor=(1.0, 1.0, 0.9412))
ax=fig.add_axes([0.1, 0.4, 0.5, 0.5])for ticklabel inax.xaxis.get_ticklabels():
ticklabel.set_color("slateblue")
ticklabel.set_fontsize(18)
ticklabel.set_rotation(30)for ticklabel inax.yaxis.get_ticklabels():
ticklabel.set_color("lightgreen")
ticklabel.set_fontsize(20)
ticklabel.set_rotation(2)
plt.show()
View Code
-------------------------------------------------------------------------------------
图 5.3
importmatplotlib.pyplot as pltimportnumpy as npfrom calendar importmonth_name, day_namefrom matplotlib.ticker importFormatStrFormatter
fig=plt.figure()
ax=fig.add_axes([0.2, 0.2, 0.7, 0.7])
x=np.arange(1, 8, 1)
y=2*x
ax.plot(x, y, ls='-', lw=2, color='orange', marker='o',
ms=20, mfc='c', mec='r')
ax.yaxis.set_major_formatter(FormatStrFormatter(r"$yen%1.1f$"))
plt.xticks(x, day_name[0:7], rotation=20)
ax.set_xlim(0,8)
ax.set_ylim(0,18)
plt.show()
View Code
-------------------------------------------------------------------------------------
图 5.4
importmatplotlib.pyplot as pltimportnumpy as np
x=np.linspace(0.5, 3.5, 100)
y=np.sin(x)
fig=plt.figure(figsize=(8, 8))
ax=fig.add_subplot(111)
ax.plot(x, y, c='b', ls='-', lw=2)
ax.annotate("maximum", xy=(np.pi/2, 1.0), xycoords='data',
xytext=((np.pi/2)+0.15, 0.8), textcoords="data",
weight="bold", color='r',
arrowprops=dict(arrowstyle='->', connectionstyle='arc3', color='r'))
ax.text(2.8, 0.4, "$y=sin(x)$", fontsize=20, color='b',
bbox=dict(facecolor='y', alpha=0.5))
plt.show()
View Code
-------------------------------------------------------------------------------------
图 5.5
来源:oschina
链接:https://my.oschina.net/u/4389867/blog/4288097
最后
以上就是虚幻热狗为你收集整理的python数据可视化之matplotlib精进,Python数据可视化之matplotlib实践 源码 第二篇 精进 第五章...的全部内容,希望文章能够帮你解决python数据可视化之matplotlib精进,Python数据可视化之matplotlib实践 源码 第二篇 精进 第五章...所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复