我是靠谱客的博主 斯文火龙果,最近开发中收集的这篇文章主要介绍数学水题,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

自己的数学基础简直烂到爆。。

从这里面随机做

113C. Double Happiness

问区间([l, r])内有多少个素数可以表示为(a^2 + b^2)的形式

任何一个满足条件的数都可以表示为(4k + 1)的形式

证明

bitset压一下位

此题完结

代码

121C. Lucky Permutation

长度为(n)的排列中第(k)大的排列,有多少个位置满足下标和值都只含4/7

由于阶乘的数量增长非常迅速,而(k)又非常小,那么显然最后的序列只有最后几位会发生改变。

前面的位置都是(i = a[i])。那么前面的可以直接数位dp/爆搜,后面的部分是经典问题,可以用逆康托展开计算。

代码

134B. Pairs of Numbers

数对((a, b))每次可以变为((a, a + b))或者((a+b, a))(初始时为((1, 1))),问其中一个变(n)的最小步数是多少

一个显然的思路是对所有((N, i))算出答案后取个min,而对于任意((N, i))最优的策略为变为((N - i, i) -> (N - i - i, i)),然后不断递归下去

代码

294C. Shaass and Lights

给一串(n)个灯,有(m)个灯初始是亮的,并给出初始亮的灯的序号。每次操作能点亮靠近亮的灯的一盏灭的灯,问点亮所有的灯有多少种方案。

点亮所有的灯总共需要(n - m)

对于每一段分别考虑,最左边和最右边的一段显然只有一种答案,中间的有(2^{a_i - a_{i - 1} - 1})种答案

而对于每一段,我们还需要统计出其在答案序列中的出现情况,也就是(C_{n - m - (sum_i)}^{a_i - a_{i - 1} - 1})

其中(sum_i = sum_{i = 1}^{i - 1} a_i - a_{i - 1} - 1)

乘起来就是答案

代码

615D. Multipliers

给出一个数的质因子分解的形式,问其所有约数的积是多少,

直接枚举每个质因子的幂算贡献,注意指数取模要模(phi(10^9 + 7))

代码

616E. Sum of Remainders

(sum_{i = 1}^m n % i)(1 leqslant n, m leqslant 10^{13})

(n % i = n - n / i * i)

直接数论分块

代码

839D. Winter is here

给出一些数,求取出一些数,当他们的GCD大于0时,将数量乘GCD累加到答案上,求累加和。

枚举(gcd),然后直接容斥减掉是(gcd)倍数的贡献

中途可能用到一点组合数的结论:(sum_{i = 1}^n i C_n^i = i * 2^{n - 1})

代码

448E. Divisors

给出一个x,k,每次操作都会将x分解因数,得到新的序列,然后每次再分解序列中的每一个数,按照每一个数分解因数从小到大排,整体顺序不做调整。

写了一发暴力居然过了。。

代码

305C. Find Maximum

直接按数位dp的套路做即可

转载于:https://www.cnblogs.com/zwfymqz/p/10226463.html

最后

以上就是斯文火龙果为你收集整理的数学水题的全部内容,希望文章能够帮你解决数学水题所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(40)

评论列表共有 0 条评论

立即
投稿
返回
顶部