我是靠谱客的博主 优美曲奇,这篇文章主要介绍CodeForces - 359D,现在分享给大家,希望可以做个参考。

Simon has an array a1, a2, ..., an, consisting of n positive integers. Today Simon asked you to find a pair of integers l, r (1 ≤ l ≤ r ≤ n), such that the following conditions hold:

  1. there is integer j (l ≤ j ≤ r), such that all integers al, al + 1, ..., ar are divisible by aj;
  2. value r - l takes the maximum value among all pairs for which condition 1 is true;

Help Simon, find the required pair of numbers (l, r). If there are multiple required pairs find all of them.

Input

The first line contains integer n (1 ≤ n ≤ 3·105).

The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 106).

Output

Print two integers in the first line — the number of required pairs and the maximum value of r - l. On the following line print all l values from optimal pairs in increasing order.

Example
Input
复制代码
1
2
5 4 6 9 3 6
Output
复制代码
1
2
1 3 2
Input
复制代码
1
2
5 1 3 5 7 9
Output
复制代码
1
2
1 4 1
Input
复制代码
1
2
5 2 3 5 7 11
Output
复制代码
1
2
5 0 1 2 3 4 5
Note

In the first sample the pair of numbers is right, as numbers 6, 9, 3 are divisible by 3.

In the second sample all numbers are divisible by number 1.

In the third sample all numbers are prime, so conditions 1 and 2 are true only for pairs of numbers (1, 1), (2, 2), (3, 3), (4, 4), (5, 5).

我们要是直接去找左右端点的话,不用说直接挂。所以我们可以想办法,减少运算量。首先一个值能整除,肯定就是这个区间内的最小值,所以我们下次就可以直接从最右段开始找,就不用再去再区间内再去暴力了,因为这个最小值已经把能找的斗找到了,所以下面更小的自己在去找自己的范围。

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include <cstdio> #include<iostream> #include<cstring> #include<algorithm> #include<queue> #include<string> #define min(a,b) (a<b?a:b) using namespace std; typedef long long ll; const int maxn=3e5+10; int val[maxn]; vector<int> v; int main() { int n; scanf("%d",&n); for(int i=0;i<n;i++) scanf("%d",&val[i]); int max_len=0; for(int i=0;i<n;i++){ if(val[i]==1){ printf("1 %dn",n-1); printf("1n"); return 0; } int j=i; while((j+1 < n)&&val[j+1]%val[i]==0) j++; int k=i; while((k-1>=0)&&val[k-1]%val[i]==0) k--; if(j-k>max_len){ max_len=j-k; v.clear(); v.push_back(k); } else if(j-k==max_len){ v.push_back(k); } i=j;//只要这个a[i]是l->r,的因子,就说明是这个区域内的最小点,我们就可以直接从r+1,开始看,往两边遍历 } printf("%d %dn",v.size(),max_len); for(int i=0;i<v.size();i++){ if(i==0) printf("%d",v[i]+1); else printf(" %d",v[i]+1); } printf("n"); return 0; }



最后

以上就是优美曲奇最近收集整理的关于CodeForces - 359D的全部内容,更多相关CodeForces内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(57)

评论列表共有 0 条评论

立即
投稿
返回
顶部