我是靠谱客的博主 沉静钢铁侠,最近开发中收集的这篇文章主要介绍Educational Codeforces Round 113 (Rated for Div. 2) ABCD 解题思路A - Balanced Substring代码B - Chess TournamentC - Jury MeetingD - Inconvenient Pairs,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Educational Codeforces Round 113 (Rated for Div. 2)


经典卡 C C C D D D,可惜了

怪自己特判写错了吧,对式子找了半天问题结果根本不是式子的问题


A - Balanced Substring

思路

找到任意一个位置 i i i,满足 s [ i ] ≠ s [ i + 1 ] s[i]neq s[i+1] s[i]=s[i+1],那么直接输出 [ i , i + 1 ] [i,i+1] [i,i+1]这个区间作为答案即可

代码

// URL: https://codeforces.com/contest/1569/problem/0
// Problem: A. Balanced Substring
// Contest: Codeforces - Educational Codeforces Round 113 (Rated for Div. 2)
// Time Limit: 2000 ms
// Memory Limit: 256 MB
// Create Time: 2021-09-08 22:35:25
// Author: StelaYuri
// 
// Powered by CP Editor (https://cpeditor.org)

#include<bits/stdc++.h>
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
#define all(a) (a).begin(),(a).end()
#define mst(a,b) memset(a,b,sizeof(a))
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> P;
const int INF=0x3f3f3f3f;
const ll LINF=0x3f3f3f3f3f3f3f3f;
const double eps=1e-12;
const double PI=acos(-1.0);
const ll mod=998244353;
const int dx[8]={0,1,0,-1,1,1,-1,-1},dy[8]={1,0,-1,0,1,-1,1,-1};
void debug(){cerr<<'n';}template<typename T,typename... Args>void debug(T x,Args... args){cerr<<"[ "<<x<< " ] , ";debug(args...);}
mt19937 mt19937random(std::chrono::system_clock::now().time_since_epoch().count());
ll getRandom(ll l,ll r){return uniform_int_distribution<ll>(l,r)(mt19937random);}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll qmul(ll a,ll b){ll r=0;while(b){if(b&1)r=(r+a)%mod;b>>=1;a=(a+a)%mod;}return r;}
ll qpow(ll a,ll n){ll r=1;while(n){if(n&1)r=(r*a)%mod;n>>=1;a=(a*a)%mod;}return r;}
ll qpow(ll a,ll n,ll p){ll r=1;while(n){if(n&1)r=(r*a)%p;n>>=1;a=(a*a)%p;}return r;}



void solve()
{
    int n;
    string s;
    cin>>n>>s;
    repp(i,1,n)
    {
        if(s[i]!=s[i-1])
        {
            cout<<i<<' '<<i+1<<'n';
            return;
        }
    }
    cout<<"-1 -1n";
}
int main()
{
    closeSync;
    multiCase
    {
        solve();
    }
    return 0;
}

B - Chess Tournament

思路

特殊的,如果所有人都只是不想输(全 1 1 1),则输出全部平局即可

只有当想赢至少一局的人数(种类 2 2 2)大于等于 3 3 3人时,我们可以让这些人凑成一个有向环 a → b arightarrow b ab表示 a a a b b b,这样环内的所有人(种类 2 2 2的所有人)就全是只赢 1 1 1局输 1 1 1局,但也满足条件

对于环外的任意边则全部视作平局即可

代码

// URL: https://codeforces.com/contest/1569/problem/B
// Problem: B. Chess Tournament
// Contest: Codeforces - Educational Codeforces Round 113 (Rated for Div. 2)
// Time Limit: 2000 ms
// Memory Limit: 256 MB
// Create Time: 2021-09-08 22:39:09
// Author: StelaYuri
// 
// Powered by CP Editor (https://cpeditor.org)

#include<bits/stdc++.h>
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
#define all(a) (a).begin(),(a).end()
#define mst(a,b) memset(a,b,sizeof(a))
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> P;
const int INF=0x3f3f3f3f;
const ll LINF=0x3f3f3f3f3f3f3f3f;
const double eps=1e-12;
const double PI=acos(-1.0);
const ll mod=998244353;
const int dx[8]={0,1,0,-1,1,1,-1,-1},dy[8]={1,0,-1,0,1,-1,1,-1};
void debug(){cerr<<'n';}template<typename T,typename... Args>void debug(T x,Args... args){cerr<<"[ "<<x<< " ] , ";debug(args...);}
mt19937 mt19937random(std::chrono::system_clock::now().time_since_epoch().count());
ll getRandom(ll l,ll r){return uniform_int_distribution<ll>(l,r)(mt19937random);}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll qmul(ll a,ll b){ll r=0;while(b){if(b&1)r=(r+a)%mod;b>>=1;a=(a+a)%mod;}return r;}
ll qpow(ll a,ll n){ll r=1;while(n){if(n&1)r=(r*a)%mod;n>>=1;a=(a*a)%mod;}return r;}
ll qpow(ll a,ll n,ll p){ll r=1;while(n){if(n&1)r=(r*a)%p;n>>=1;a=(a*a)%p;}return r;}

char mp[55][55];

void solve()
{
    int n;
    string s;
    cin>>n>>s;
    
    mst(mp,'.');
    
    rep(i,1,n)
        mp[i][i]='X';
    
    vector<int> vec;
    repp(i,0,n)
        if(s[i]=='2')
            vec.pb(i+1);
    if(vec.size()==1||vec.size()==2)
    {
        cout<<"NOn";
        return;
    }
    
    rep(i,1,n)
        rep(j,1,n)
        {
            if(i==j)continue;
            if(s[i-1]=='1'||s[j-1]=='1')
                mp[i][j]='=';
        }
    
    if(vec.size()) //环
    {
        repp(i,1,vec.size()) // i-1 -> i
        {
            mp[vec[i-1]][vec[i]]='+';
            mp[vec[i]][vec[i-1]]='-';
        }
        mp[vec[vec.size()-1]][vec[0]]='+';
        mp[vec[0]][vec[vec.size()-1]]='-';
    }
    
    rep(i,1,n)
        rep(j,1,n)
            if(mp[i][j]=='.')
                mp[i][j]='=';
    
    cout<<"YESn";
    rep(i,1,n)
    {
        rep(j,1,n)
            cout<<mp[i][j];
        cout<<'n';
    }
}
int main()
{
    closeSync;
    multiCase
    {
        solve();
    }
    return 0;
}

C - Jury Meeting

思路

记最大值为 a a a,次大值为 b b b,最大值的数量为 c n t 1 cnt1 cnt1,次大值的数量为 c n t 2 cnt2 cnt2

如果最大值的数量 c n t 1 ≥ 2 cnt1ge 2 cnt12,那么任意排列最终都会剩下拥有最大值的这些人在循环讲话,并且同一个人不会连续说两次,故方案数为 A n n A_n^n Ann

否则,拥有最大值 a a a的只有 1 1 1人,最后一次讲话肯定是这个人讲,于是需要保证倒数第二次讲话不是他讲

只有在次大值 b = a − 1 b=a-1 b=a1时,将任意一个拥有次大值的人放在拥有最大值的人后面,才能保证条件满足;否则方案数为 0 0 0

因此先将所有拥有次大值的人进行全排列,方案数为 A c n t 2 c n t 2 A_{cnt2}^{cnt2} Acnt2cnt2

拥有最大值的人借助隔板法,当隔板插入,发现不能插在最后一个位置,其余 c n t 2 cnt2 cnt2个位置均能插入,故方案数为 c n t 2 cnt2 cnt2

剩余的 n − ( c n t 2 + c n t 1 ) n-(cnt2+cnt1) n(cnt2+cnt1)个人同样根据隔板法全部插入即可,方案数 A n n − ( c n t 2 + c n t 1 ) A_n^{n-(cnt2+cnt1)} Ann(cnt2+cnt1)

故最终答案为 A c n t 2 c n t 2 ⋅ c n t 2 ⋅ A n n − ( c n t 2 + c n t 1 ) A_{cnt2}^{cnt2}cdot cnt2cdot A_n^{n-(cnt2+cnt1)} Acnt2cnt2cnt2Ann(cnt2+cnt1)

代码

// URL: https://codeforces.com/contest/1569/problem/C
// Problem: C. Jury Meeting
// Contest: Codeforces - Educational Codeforces Round 113 (Rated for Div. 2)
// Time Limit: 2000 ms
// Memory Limit: 256 MB
// Create Time: 2021-09-08 22:52:38
// Author: StelaYuri
// 
// Powered by CP Editor (https://cpeditor.org)

#include<bits/stdc++.h>
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
#define all(a) (a).begin(),(a).end()
#define mst(a,b) memset(a,b,sizeof(a))
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> P;
const int INF=0x3f3f3f3f;
const ll LINF=0x3f3f3f3f3f3f3f3f;
const double eps=1e-12;
const double PI=acos(-1.0);
const ll mod=998244353;
const int dx[8]={0,1,0,-1,1,1,-1,-1},dy[8]={1,0,-1,0,1,-1,1,-1};
void debug(){cerr<<'n';}template<typename T,typename... Args>void debug(T x,Args... args){cerr<<"[ "<<x<< " ] , ";debug(args...);}
mt19937 mt19937random(std::chrono::system_clock::now().time_since_epoch().count());
ll getRandom(ll l,ll r){return uniform_int_distribution<ll>(l,r)(mt19937random);}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll qmul(ll a,ll b){ll r=0;while(b){if(b&1)r=(r+a)%mod;b>>=1;a=(a+a)%mod;}return r;}
ll qpow(ll a,ll n){ll r=1;while(n){if(n&1)r=(r*a)%mod;n>>=1;a=(a*a)%mod;}return r;}
ll qpow(ll a,ll n,ll p){ll r=1;while(n){if(n&1)r=(r*a)%p;n>>=1;a=(a*a)%p;}return r;}

const int N=4e5;
ll fac[N+1],inv[N+1];
void init()
{
    fac[0]=1;
    for(int i=1;i<=N;i++)
        fac[i]=fac[i-1]*i%mod;
    inv[N]=qpow(fac[N],mod-2);
    for(int i=N-1;i>=0;i--)
        inv[i]=inv[i+1]*(i+1)%mod;
}
ll getC(ll m,ll n)
{
    return fac[m]*inv[m-n]%mod*inv[n]%mod;
}
ll getA(ll m,ll n)
{
    return fac[m]*inv[m-n]%mod;
}

int n,a[200050];

void solve()
{
    cin>>n;
    rep(i,1,n)
        cin>>a[i];
    sort(a+1,a+n+1);
    
    int p=n;
    while(p>1&&a[p]==a[p-1])
        p--;
    
    int cnt1=n-p+1; //最大值的数量
    
    if(cnt1>1)
    {
        cout<<getA(n,n)<<'n';
        return;
    }
    
    if(a[p-1]+1<a[p])
    {
        cout<<0<<'n';
        return;
    }
    
    p--;
    while(p>1&&a[p]==a[p-1])
        p--;
    int cnt2=n-cnt1-p+1; //次大值的数量
    
    cout<<getA(cnt2,cnt2)*cnt2%mod*getA(n,n-(cnt2+1))%mod<<'n';
}
int main()
{
    closeSync;
    init();
    multiCase
    {
        solve();
    }
    return 0;
}

D - Inconvenient Pairs

思路

根据题意,所有点都肯定落在某条横纵线上或是横纵线交点上

因此如果某个点恰好落在给定的横纵线的某个交点上,那么这个点与其余任意点之间的最短距离一定等于其曼哈顿距离,对答案无贡献

否则,假如某个点 P P P落在某条横线上,并夹在第 i i i条和第 i + 1 i+1 i+1条纵线之间

明显可以得出,所有夹在第 i i i条和第 i + 1 i+1 i+1条纵线之间并且与点 P P P不是同一条横线上的点都可以计入答案

于是我们借助 4 4 4个map容器,两个map记录第 i i i条与第 i + 1 i+1 i+1条横线之间、第 i i i条与第 i + 1 i+1 i+1条纵线之间分别有多少点,另外两个map记录在第 i i i条与第 i + 1 i+1 i+1条横线之间并且在第 j j j条纵线上、在第 i i i条与第 i + 1 i+1 i+1条纵线之间并且在第 j j j条横线上的点分别有多少

那么对于点 P P P夹在哪两条线之间,通过二分即可求出

统计答案时拿对应的两个容器相减即为答案,然后更新对应的两个容器即可

代码

// URL: https://codeforces.com/contest/1569/problem/D
// Problem: D. Inconvenient Pairs
// Contest: Codeforces - Educational Codeforces Round 113 (Rated for Div. 2)
// Time Limit: 2000 ms
// Memory Limit: 256 MB
// Create Time: 2021-09-08 23:52:41
// Author: StelaYuri
// 
// Powered by CP Editor (https://cpeditor.org)

#include<bits/stdc++.h>
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
#define all(a) (a).begin(),(a).end()
#define mst(a,b) memset(a,b,sizeof(a))
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> P;
const int INF=0x3f3f3f3f;
const ll LINF=0x3f3f3f3f3f3f3f3f;
const double eps=1e-12;
const double PI=acos(-1.0);
const ll mod=998244353;
const int dx[8]={0,1,0,-1,1,1,-1,-1},dy[8]={1,0,-1,0,1,-1,1,-1};
void debug(){cerr<<'n';}template<typename T,typename... Args>void debug(T x,Args... args){cerr<<"[ "<<x<< " ] , ";debug(args...);}
mt19937 mt19937random(std::chrono::system_clock::now().time_since_epoch().count());
ll getRandom(ll l,ll r){return uniform_int_distribution<ll>(l,r)(mt19937random);}
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll qmul(ll a,ll b){ll r=0;while(b){if(b&1)r=(r+a)%mod;b>>=1;a=(a+a)%mod;}return r;}
ll qpow(ll a,ll n){ll r=1;while(n){if(n&1)r=(r*a)%mod;n>>=1;a=(a*a)%mod;}return r;}
ll qpow(ll a,ll n,ll p){ll r=1;while(n){if(n&1)r=(r*a)%p;n>>=1;a=(a*a)%p;}return r;}

int x[200050],y[200050];

void solve()
{
    int n,m,k;
    cin>>n>>m>>k;
    rep(i,1,n)
        cin>>x[i];
    rep(i,1,m)
        cin>>y[i];
    x[n+1]=INF;
    y[m+1]=INF; //二分边界
    
    map<int,int> mpx,mpy;
    map<P,int> mpxy,mpyx;
    
    ll ans=0;
    rep(i,1,k)
    {
        int xx,yy;
        cin>>xx>>yy;
        int px=lower_bound(x+1,x+n+1,xx)-x;
        int py=lower_bound(y+1,y+m+1,yy)-y;
        if(x[px]==xx&&y[py]==yy)
            continue; //线的交点,无贡献
        if(x[px]==xx) //落在某横线上
        {
            ans+=mpy[py]-mpxy[P(px,py)]; // py-1 ~ py 两线之间所有点,减去两线之间且在px横线上的点的数量,即为答案
            mpy[py]++;
            mpxy[P(px,py)]++;
        }
        else //落在某纵线上
        {
            ans+=mpx[px]-mpyx[P(py,px)];
            mpx[px]++;
            mpyx[P(py,px)]++;
        }
    }
    cout<<ans<<'n';
}
int main()
{
    closeSync;
    multiCase
    {
        solve();
    }
    return 0;
}

https://www.cnblogs.com/stelayuri/p/15245234.html


最后

以上就是沉静钢铁侠为你收集整理的Educational Codeforces Round 113 (Rated for Div. 2) ABCD 解题思路A - Balanced Substring代码B - Chess TournamentC - Jury MeetingD - Inconvenient Pairs的全部内容,希望文章能够帮你解决Educational Codeforces Round 113 (Rated for Div. 2) ABCD 解题思路A - Balanced Substring代码B - Chess TournamentC - Jury MeetingD - Inconvenient Pairs所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(47)

评论列表共有 0 条评论

立即
投稿
返回
顶部