概述
动态shape
所谓动态shape就是编译时指定可动态的范围【L-H】,推理时可以允许L<=shape<=H。在全卷积网络中我们通常就是有这个诉求的,推理时的shape是可以动态改变的,不一定要限制死,这个动态shape不一定只宽高,还指batchsize也是动态的。
实现动态shape的操作主要就是修改下面提到的两个方面就行了。
1.构建网络时:
1.1.必须在模型定义时,输入维度给定为-1,否则该维度不会动态。注意一下两点:
- 若onnx文件,则onnx文件打开后如果维度是字母或-1的话那么它的维度就被认为是动态的。
- 如果你的模型中存在reshape类操作,那么reshape的参数必须随动态进行计算。而大部分时候这都是问题。除非你是全卷积模型,否则大部分时候只需要为batch_size维度设置为动态,其他维度尽量避免设置动态
1.2.配置profile:
- create: builder->createOptimizationProfile()
- set: setDimensions()设置kMIN, kOPT, kMAX的一系列输入尺寸范围
- add:config->addOptimizationProfile(profile);添加profile到网络配置中
2.推理阶段时:
2.1.需要在选择profile的索引后设置input的维度即shape:
//这里就是指的把输入的shape设置成(1,1,3,3),Bindings的第0个索引表示输入(具体bindings的概念参见文章:tensorRT实现模型的推理过程)
execution_context->setBindingDimensions(0, nvinfer1::Dims4(1, 1, 3, 3))
代码示例
和之前全连接的代码唯一的区别就是两个点,一个是网络结构的定义换成了CNN,另一个是动态shape的配置createOptimizationProfile。OptimizationProfile是一个优化配置文件,用来指定输入的shape可以变换的范围的,不要被优化两个字蒙蔽了双眼,其实就是为了告诉tensorRT我的shape是什么范围!
// tensorRT include
#include <NvInfer.h>
#include <NvInferRuntime.h>
// cuda include
#include <cuda_runtime.h>
// system include
#include <stdio.h>
#include <math.h>
#include <iostream>
#include <fstream> // 后面要用到ios这个库
#include <vector>
using namespace std;
class TRTLogger : public nvinfer1::ILogger{
public:
virtual void log(Severity severity, nvinfer1::AsciiChar const* msg) noexcept override{
if(severity <= Severity::kINFO){
printf("%d: %sn", severity, msg);
}
}
} logger;
nvinfer1::Weights make_weights(float* ptr, int n){
nvinfer1::Weights w;
w.count = n;
w.type = nvinfer1::DataType::kFLOAT;
w.values = ptr;
return w;
}
bool build_model(){
TRTLogger logger;
// ----------------------------- 1. 定义 builder, config 和network -----------------------------
nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(logger);
nvinfer1::IBuilderConfig* config = builder->createBuilderConfig();
nvinfer1::INetworkDefinition* network = builder->createNetworkV2(1);
// 构建一个模型
/*
Network definition:
image
|
conv(3x3, pad=1)
input = 1(指的是channel), output = 1, bias = True
w=[[1.0, 2.0, 0.5], [0.1, 0.2, 0.5], [0.2, 0.2, 0.1]], b=0.0
|
relu
|
prob
*/
// ----------------------------- 2. 输入,模型结构和输出的基本信息 -----------------------------
const int num_input = 1;
const int num_output = 1;
float layer1_weight_values[] = {
1.0, 2.0, 3.1,
0.1, 0.1, 0.1,
0.2, 0.2, 0.2
}; // 行优先
float layer1_bias_values[]
= {0.0};
// 如果要使用动态shape,必须让NetworkDefinition的维度定义为-1,in_channel是固定的
nvinfer1::ITensor* input = network->addInput("image", nvinfer1::DataType::kFLOAT, nvinfer1::Dims4(-1, num_input, -1, -1));
nvinfer1::Weights layer1_weight = make_weights(layer1_weight_values, 9);
nvinfer1::Weights layer1_bias
= make_weights(layer1_bias_values, 1);
//网络定义卷积层
auto layer1 = network->addConvolution(*input, num_output, nvinfer1::DimsHW(3, 3), layer1_weight, layer1_bias);
layer1->setPadding(nvinfer1::DimsHW(1, 1));
auto prob = network->addActivation(*layer1->getOutput(0), nvinfer1::ActivationType::kRELU); // *(layer1->getOutput(0))
// 将我们需要的prob标记为输出
network->markOutput(*prob->getOutput(0));
int maxBatchSize = 10;
printf("Workspace Size = %.2f MBn", (1 << 28) / 1024.0f / 1024.0f);
// 配置暂存存储器,用于layer实现的临时存储,也用于保存中间激活值
config->setMaxWorkspaceSize(1 << 28);
// --------------------------------- 2.1 关于profile ----------------------------------
// profile就是关于实现模型编译时动态shape的配置!如果模型有多个输入,则必须多个profile
auto profile = builder->createOptimizationProfile();
// 配置最小允许1 x 1 x 3 x 3,kMIN表示配置的最小值
profile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kMIN, nvinfer1::Dims4(1, num_input, 3, 3));
//kOPT是表示配置的最优值
profile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kOPT, nvinfer1::Dims4(1, num_input, 3, 3));
// 配置最大允许10 x 1 x 5 x 5,kMAX表示配置的最大值
// if networkDims.d[i] != -1, then minDims.d[i] == optDims.d[i] == maxDims.d[i] == networkDims.d[i]
profile->setDimensions(input->getName(), nvinfer1::OptProfileSelector::kMAX, nvinfer1::Dims4(maxBatchSize, num_input, 5, 5));
config->addOptimizationProfile(profile);
nvinfer1::ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
if(engine == nullptr){
printf("Build engine failed.n");
return false;
}
// -------------------------- 3. 序列化 ----------------------------------
// 将模型序列化,并储存为文件
nvinfer1::IHostMemory* model_data = engine->serialize();
FILE* f = fopen("engine.trtmodel", "wb");
fwrite(model_data->data(), 1, model_data->size(), f);
fclose(f);
// 卸载顺序按照构建顺序倒序
model_data->destroy();
engine->destroy();
network->destroy();
config->destroy();
builder->destroy();
printf("Done.n");
return true;
}
vector<unsigned char> load_file(const string& file){
ifstream in(file, ios::in | ios::binary);
if (!in.is_open())
return {};
in.seekg(0, ios::end);
size_t length = in.tellg();
std::vector<uint8_t> data;
if (length > 0){
in.seekg(0, ios::beg);
data.resize(length);
in.read((char*)&data[0], length);
}
in.close();
return data;
}
void inference(){
// ------------------------------- 1. 加载model并反序列化 -------------------------------
TRTLogger logger;
auto engine_data = load_file("engine.trtmodel");
nvinfer1::IRuntime* runtime
= nvinfer1::createInferRuntime(logger);
nvinfer1::ICudaEngine* engine = runtime->deserializeCudaEngine(engine_data.data(), engine_data.size());
if(engine == nullptr){
printf("Deserialize cuda engine failed.n");
runtime->destroy();
return;
}
nvinfer1::IExecutionContext* execution_context = engine->createExecutionContext();
cudaStream_t stream = nullptr;
cudaStreamCreate(&stream);
/*
Network definition:
image
|
conv(3x3, pad=1)
input = 1, output = 1, bias = True
w=[[1.0, 2.0, 0.5], [0.1, 0.2, 0.5], [0.2, 0.2, 0.1]], b=0.0
|
relu
|
prob
*/
// ------------------------------- 2. 输入与输出 -------------------------------
float input_data_host[] = {
// batch 0
1,
1,
1,
1,
1,
1,
1,
1,
1,
// batch 1
-1,
1,
1,
1,
0,
1,
1,
1,
-1
};
float* input_data_device = nullptr;
// 3x3输入,对应3x3输出
int ib = 2;
int iw = 3;
int ih = 3;
float output_data_host[ib * iw * ih];
float* output_data_device = nullptr;
cudaMalloc(&input_data_device, sizeof(input_data_host));
cudaMalloc(&output_data_device, sizeof(output_data_host));
cudaMemcpyAsync(input_data_device, input_data_host, sizeof(input_data_host), cudaMemcpyHostToDevice, stream);
// ------------------------------- 3. 推理 -------------------------------
// 明确当前推理时,使用的数据输入大小,setBindingDimensions第一个参数为0指的是输入
execution_context->setBindingDimensions(0, nvinfer1::Dims4(ib, 1, ih, iw));
float* bindings[] = {input_data_device, output_data_device};
bool success
= execution_context->enqueueV2((void**)bindings, stream, nullptr);
cudaMemcpyAsync(output_data_host, output_data_device, sizeof(output_data_host), cudaMemcpyDeviceToHost, stream);
cudaStreamSynchronize(stream);
// ------------------------------- 4. 输出结果 -------------------------------
for(int b = 0; b < ib; ++b){
printf("batch %d. output_data_host = n", b);
for(int i = 0; i < iw * ih; ++i){
printf("%f, ", output_data_host[b * iw * ih + i]);
if((i + 1) % iw == 0)
printf("n");
}
}
printf("Clean memoryn");
cudaStreamDestroy(stream);
cudaFree(input_data_device);
cudaFree(output_data_device);
execution_context->destroy();
engine->destroy();
runtime->destroy();
}
int main(){
if(!build_model()){
return -1;
}
inference();
return 0;
}
最后
以上就是要减肥鱼为你收集整理的tensorRT模型推理时动态shape的全部内容,希望文章能够帮你解决tensorRT模型推理时动态shape所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复