概述
理解静态和动态的Tensor类型的形状
本文翻译自: 《Understanding static and dynamic shapes》, 如有侵权请联系删除,仅限于学术交流,请勿商用。如有谬误,请联系指出。
在TensorFlow中,tensor
有一个在图构建过程中就被决定的静态形状属性, 这个静态形状可以是没有明确加以说明的(underspecified),比如,我们可以定一个具有形状[None, 128]大小的tensor
。
import tensorflow as tf
a = tf.placeholder(tf.float32, [None, 128])
这意味着tensor
的第一个维度可以是任何尺寸,这个将会在Session.run()
中被动态定义。当然,你可以查询一个tensor
的静态形状,如:
static_shape = a.shape.as_list() # returns [None, 128]
为了得到一个tensor
的动态形状,你可以调用tf.shape
操作,这将会返回指定tensor的形状,如:
dynamic_shape = tf.shape(a)
tensor的静态形状可以通过方法Tensor_name.set_shape()
设定,如:
a.set_shape([32, 128]) # static shape of a is [32, 128]
a.set_shape([None, 128]) # first dimension of a is determined dynamically
调用tf.reshape()
方法,你可以动态地重塑一个tensor
的形状,如:
a = tf.reshape(a, [32, 128])
可以定义一个函数,当静态形状的时候返回其静态形状,当静态形状不存在时,返回其动态形状,如:
def get_shape(tensor):
static_shape = tensor.shape.as_list()
dynamic_shape = tf.unstack(tf.shape(tensor))
dims = [s[1] if s[0] is None else s[0]
for s in zip(static_shape, dynamic_shape)]
return dims
现在,如果我们需要将一个三阶的tensor
转变为2阶的tensor
,通过折叠(collapse)第二维和第三维成一个维度,我们可以通过我们刚才定义的get_shape()
方法进行,如:
b = tf.placeholder(tf.float32, [None, 10, 32])
shape = get_shape(b)
b = tf.reshape(b, [shape[0], shape[1] * shape[2]])
注意到无论这个tensor
的形状是静态指定的还是动态指定的,这个代码都是有效的。事实上,我们可以写出一个通用的reshape函数,用于折叠任意在列表中的维度(any list of dimensions):
import tensorflow as tf
import numpy as np
def reshape(tensor, dims_list):
shape = get_shape(tensor)
dims_prod = []
for dims in dims_list:
if isinstance(dims, int):
dims_prod.append(shape[dims])
elif all([isinstance(shape[d], int) for d in dims]):
dims_prod.append(np.prod([shape[d] for d in dims]))
else:
dims_prod.append(tf.prod([shape[d] for d in dims]))
tensor = tf.reshape(tensor, dims_prod)
return tensor
然后折叠第二个维度就变得特别简单了。
b = tf.placeholder(tf.float32, [None, 10, 32])
b = reshape(b, [0, [1, 2]])
最后
以上就是现代钢铁侠为你收集整理的Effective TensorFlow Chapter 2: 理解静态和动态的Tensor类型的形状理解静态和动态的Tensor类型的形状的全部内容,希望文章能够帮你解决Effective TensorFlow Chapter 2: 理解静态和动态的Tensor类型的形状理解静态和动态的Tensor类型的形状所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复