我是靠谱客的博主 鲜艳钻石,最近开发中收集的这篇文章主要介绍【机器学习】隐马尔可夫模型及其三个基本问题(四)状态序列预测算法及python实现,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

【机器学习】隐马尔可夫模型及其三个基本问题(四)状态序列预测算法及python实现

    • 一、维特比算法
    • 二、python实现
    • 参考资料

隐马尔可夫模型状态序列预测问题是指给定模型 λ = [ A , B , ∏ ] lambda = left[ {A,B,prod } right] λ=[A,B,]和观测序列 X = { x 1 , x 2 , ⋯   , x n } X = left{ {{x_1},{x_2}, cdots ,{x_n}} right} X={x1,x2,,xn},求最可能出现的对应状态序列。本篇博文介绍状态序列预测算法中的维特比算法(Viterbi algorithm)[参考资料1]。

一、维特比算法

维特比算法实际是用动态规划解隐马尔科夫模型的预测问题,首先导入两个变量 δ delta δ ψ psi ψ

定义在时刻 t t t状态为 q i q_i qi的所有单个路径 ( y 1 , y 2 , ⋯   , y t ) ({y_1},{y_2}, cdots ,{y_t}) (y1,y2,,yt)中概率最大值为:
δ t ( q i ) = max ⁡ y 1 , y 2 , ⋯   , y t − 1 P ( y t = q i , y t − 1 , ⋯   , y 1 , x t , ⋯   , x 1 ∣ λ ) , i = 1 , 2 , ⋯   , N {delta _t}left( {{q_i}} right) = mathop {max }limits_{{y_1},{y_2}, cdots ,{y_{t - 1}}} Pleft( {{y_t} = {q_i},{y_{t - 1}}, cdots ,{y_1},{x_t}, cdots ,{x_1}left| lambda right.} right),i = 1,2, cdots ,N δt(qi)=y1,y2,,yt1maxP(yt=qi,yt1,,y1,xt,,x1λ),i=1,2,,N

则变量 δ delta δ的递推公式为:
δ t + 1 ( q i ) = max ⁡ y 1 , y 2 , ⋯   , y t P ( y t + 1 = q i , y t , ⋯   , y 1 , x t + 1 , ⋯   , x 1 ∣ λ ) = max ⁡ 1 ≤ j ≤ N [ δ t ( j ) a j i ] b i ( x t + 1 ) , i = 1 , 2 , ⋯   , N ; t = 1 , 2 , ⋯   , n − 1 {delta _{t + 1}}left( {{q_i}} right) = mathop {max }limits_{{y_1},{y_2}, cdots ,{y_t}} Pleft( {{y_{t + 1}} = {q_i},{y_t}, cdots ,{y_1},{x_{t + 1}}, cdots ,{x_1}left| lambda right.} right) = mathop {max }limits_{1 le j le N} left[ {{delta _t}left( j right){a_{ji}}} right]{b_i}({x_{t + 1}}),i = 1,2, cdots ,N;t = 1,2, cdots ,n - 1 δt+1(qi)=y1,y2,,ytmaxP(yt+1=qi,yt,,y1,xt+1,,x1λ)=1jNmax[δt(j)aji]bi(xt+1),i=1,2,,N;t=1,2,,n1

定义在时刻 t t t状态为 q i q_i qi的所有单个路径 ( y 1 , y 2 , ⋯   , y t − 1 , q i ) ({y_1},{y_2}, cdots ,{y_{t - 1}},q_i) (y1,y2,,yt1,qi)中概率最大的路径的第 t − 1 t-1 t1个节点为:
ψ t ( q i ) = arg ⁡ max ⁡ 1 ≤ j ≤ N [ δ t − 1 ( j ) a j i ] , i = 1 , 2 , ⋯   , N {psi _t}(q_i) = arg mathop {max }limits_{1 le j le N} left[ {{delta _{t - 1}}left( j right){a_{ji}}} right],i = 1,2, cdots ,N ψt(qi)=arg1jNmax[δt1(j)aji],i=1,2,,N

维特比算法步骤
输入:模型 λ = [ A , B , ∏ ] lambda = [A,B,prod ] λ=[A,B,]和观测序列 X = { x 1 , x 2 , ⋯   , x n } X = left{ {{x_1},{x_2}, cdots ,{x_n}} right} X={x1,x2,,xn}
输出:最优状态序列 Y = { y 1 , y 2 , ⋯   , y n } Y = left{ {{y_1},{y_2}, cdots ,{y_n}} right} Y={y1,y2,,yn}
(1)初始化:

δ 1 ( q i ) = π i b i ( x 1 ) , i = 1 , 2 , ⋯   , N ψ 1 ( q i ) = 0 , i = 1 , 2 , ⋯   , N begin{array}{l} {delta _1}({q_i}) = {pi _{_i}}{b_i}left( {{x_1}} right),i = 1,2, cdots ,N\ {psi _1}left( {{q_i}} right) = 0,i = 1,2, cdots ,N end{array} δ1(qi)=πibi(x1),i=1,2,,Nψ1(qi)=0,i=1,2,,N

(2)递推:对于 t = 2 , 3 , ⋯   , n t = 2,3, cdots ,n t=2,3,,n

δ t ( q i ) = max ⁡ 1 ≤ j ≤ N [ δ t − 1 ( j ) a j i ] b i ( x t ) , i = 1 , 2 , ⋯   , N ψ t ( q i ) = arg ⁡ max ⁡ 1 ≤ j ≤ N [ δ t − 1 ( j ) a j i ] , i = 1 , 2 , ⋯   , N begin{array}{l} {delta _t}left( {{q_i}} right) = mathop {max }limits_{1 le j le N} left[ {{delta _{t - 1}}left( j right){a_{ji}}} right]{b_i}({x_t}),i = 1,2, cdots ,N\ {psi _t}left( {{q_i}} right) = arg mathop {max }limits_{1 le j le N} left[ {{delta _{t - 1}}left( j right){a_{ji}}} right],i = 1,2, cdots ,N end{array} δt(qi)=1jNmax[δt1(j)aji]bi(xt),i=1,2,,Nψt(qi)=arg1jNmax[δt1(j)aji],i=1,2,,N

(3)终止:

y n = arg ⁡ max ⁡ 1 ≤ i ≤ N [ δ n ( q i ) ] {y_n} = arg mathop {max }limits_{1 le i le N} left[ {{delta _n}left( {{q_i}} right)} right] yn=arg1iNmax[δn(qi)]

(4)最优路径回朔:对于 t = n − 1 , n − 2 , ⋯   , 1 t = n - 1,n - 2, cdots ,1 t=n1,n2,,1

y t = ψ t + 1 ( y t + 1 ) {y_t} = {psi _{t + 1}}left( {{y_{t + 1}}} right) yt=ψt+1(yt+1)

二、python实现

代码参考资料2

import numpy as np
class HMM:
def __init__(self, A, B, Pi, O):
self.A = np.array(A)
# 状态转移概率矩阵
self.B = np.array(B)
# 观测概率矩阵
self.Pi = np.array(Pi)
# 初始状态概率矩阵
self.O = np.array(O)
# 观测序列
self.N = self.A.shape[0] # 状态取值个数
self.M = self.B.shape[1] # 观测值取值个数
def viterbi(self):
n = len(self.O)
#观测序列和状态序列的长度
Y = np.zeros(n)
#初始化状态序列
delta = np.zeros((n,self.N))
psi = np.zeros((n,self.N))
#初始化
for i in range(self.N):
delta[0,i] = self.Pi[i] * self.B[i,self.O[0]]
psi[0,i] = 0
#递推
for t in range(1,n):
for i in range(self.N):
delta[t,i] = self.B[i,self.O[t]] * np.array([delta[t-1,j] * self.A[j,i] for j in range(self.N)]).max()
psi[t,i] = np.array([delta[t-1,j] * self.A[j,i] for j in range(self.N)]).argmax()
print(psi)
#终止
Y[n-1] = delta[n-1,:].argmax()
print(Y[n-1])
#回朔
for t in range(n-2,-1,-1):
Y[t] = psi[int(t+1),int(Y[t+1])]
return Y
if __name__ == '__main__':
print('----------------1.初始化HMM模型参数------------------')
A = [[0,1,0,0],[0.4,0,0.6,0],[0,0.4,0,0.6],[0,0,0.5,0.5]]
B = [[0.5,0.5],[0.3,0.7],[0.6,0.4],[0.8,0.2]]
Pi = [0.25,0.25,0.25,0.25]
print('----------------2.观测序列---------------------------')
O = [0,1,0]
print('----------------3.viterbi 算法-----------------------')
hmm = HMM(A,B,Pi,O)
Y = hmm.viterbi()

参考资料

1、《统计学习方法》李航
2、https://www.cnblogs.com/d-roger/articles/5719979.html

最后

以上就是鲜艳钻石为你收集整理的【机器学习】隐马尔可夫模型及其三个基本问题(四)状态序列预测算法及python实现的全部内容,希望文章能够帮你解决【机器学习】隐马尔可夫模型及其三个基本问题(四)状态序列预测算法及python实现所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(61)

评论列表共有 0 条评论

立即
投稿
返回
顶部