我是靠谱客的博主 危机小虾米,最近开发中收集的这篇文章主要介绍用Hadoop的MapReduce气象数据编程,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

转载地址:https://blog.csdn.net/someby/article/details/82948583

一:数据格式分析
    1.数据(下载地址:ftp://ftp.ncdc.noaa.gov/pub/data/noaa)
    0067011990999991950051507004888888889999999N9+00001+9999999999999999999999
    0067011990999991950051512004888888889999999N9+00221+9999999999999999999999
    0067011990999991950051518004888888889999999N9-00111+9999999999999999999999
    0067011990999991949032412004888888889999999N9+01111+9999999999999999999999
    0067011990999991950032418004888888880500001N9+00001+9999999999999999999999
    0067011990999991950051507004888888880500001N9+00781+9999999999999999999999
    元数据描述:
             第15-19个字符表示year,例如1950年、1949年等;
             第45-50个字符表示的是温度,例如-00111、+00001
             第50位只能是0、1、4、5、9等几个数字;
    补充说明:在生产环境下我们拿到的Log信息一般都有很多列,具体的列和列的组合构成了实际上不同的业务意义;

    二:通过MapReduce计算气象数据代码实现
    1.Mapper的生命周期


    前置生命周期方法是setup,在setup中可以做初始化的一些工作,例如打开数据库链接;
    而在map中是正式的处理业务逻辑方法
    Cleanup是清理资源,例如关闭数据库链接等;
    Run是整个Mapper的运行引擎,会不断的根据Reader读取到的key和Value来不断的调用map方法;
    2.在Reducer中可以通过setup指定不同的数据存储地,例如把结果存储在数据库


    3.编程的时候尽量复用对象,例如Text在hadoop中是非常笨重的,此时我们在Mapper和Reducer中最好声明Text的局部变量,让后不断的复用该变量;
    4.整个实现代码如下所示

 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
 
import java.io.IOException;
 
/**
 * FileName: TemperatureComputation
 * Author:   hadoop
 * Email:    3165845957@qq.com
 * Date:     18-10-5 下午11:21
 * Description:
 * 通过分析气象的日志数据来具体计算出气象日志的相关统计数据
 *
 * 0067011990999991950051507004888888889999999N9+00001+9999999999999999999999
 * 0067011990999991950051512004888888889999999N9+00221+9999999999999999999999
 * 0067011990999991950051518004888888889999999N9-00111+9999999999999999999999
 * 0067011990999991949032412004888888889999999N9+01111+9999999999999999999999
 * 0067011990999991950032418004888888880500001N9+00001+9999999999999999999999
 * 0067011990999991950051507004888888880500001N9+00781+9999999999999999999999
 */
public class TemperatureComputation {
    public static class TemperatureMapper extends Mapper<LongWritable, Text,Text, IntWritable>{
        private static final int MISSING = 9999;
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String data = value.toString();//获取输入的一行数据
            String year = data.substring(15,19);//获取年,第15-19个字符表示year,例如1950年、1949年等;
            int temperature = 0;
            //第45-50个字符表示的是温度,例如-00111、+00001
            if ('+' == data.charAt(45)){ //截取气温的符号
                temperature = Integer.parseInt(data.substring(46,50)); //气温是正数,不用获得“+”
            }else {
                temperature = Integer.parseInt(data.substring(45,50)); //气温是负数,直接将“-”加入到数据中
            }
            //第50位只能是0、1、4、5、9等几个数字;
            String valueDataFlag = data.substring(50,51);
            if (temperature != MISSING && valueDataFlag.matches("[01459]")){
                context.write(new Text(year),new IntWritable(temperature));
            }
        }
    }
    public static class TemperatureReduce extends Reducer<Text,IntWritable,Text,IntWritable>{
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            //提取最低温度的年份和温度
            int coldesTemperature = Integer.MAX_VALUE;
            for (IntWritable item :values){
                coldesTemperature = Math.min(coldesTemperature,item.get());
            }
            context.write(key,new IntWritable(coldesTemperature));
        }
    }
 
 
    public static void main(String[] args) throws Exception{
        if (args.length != 2){
            System.err.println("Usage: TemperatureComputation<input path> <output path>");
            System.exit(-1);
        }
        Configuration conf = new Configuration();
//        Job job = new Job(conf);
        Job job = Job.getInstance(conf);
        job.setJarByClass(TemperatureComputation.class);
        job.setJobName("TemperatureComputation");
 
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
 
        job.setMapperClass(TemperatureMapper.class);
        job.setCombinerClass(TemperatureReduce.class);//在本地先进行归并
        job.setReducerClass(TemperatureReduce.class);
 
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);
 
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
 
        job.waitForCompletion(true);
 
 
    }
}

 

看到这里,我不知道combine是啥,于是我又转载了combine相关的博文,写的真的很好
 
--------------------- 
作者:ombey 
来源:CSDN 
原文:https://blog.csdn.net/someby/article/details/82948583 
版权声明:本文为博主原创文章,转载请附上博文链接!

最后

以上就是危机小虾米为你收集整理的用Hadoop的MapReduce气象数据编程的全部内容,希望文章能够帮你解决用Hadoop的MapReduce气象数据编程所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(59)

评论列表共有 0 条评论

立即
投稿
返回
顶部