我是靠谱客的博主 矮小画板,最近开发中收集的这篇文章主要介绍hadoop学习1——job执行过程,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

接触hadoop半年多了,主要使用hadoop+hive做数据分析。部署和使用现在都没什么问题了,但是就是对其内部原理不是非常清楚,所以准备从头从源码开始系统学习,把学习过程中的问题和自己的理解记录在此。

下面是一段调试wordcount:

环境:windows + cygwin + eclipse(怎么搭建环境、和搭建过程中遇到的问题以后有空再写,现在主要学习一下hadoop的运行原理),伪分布式模式

测试数据:

   t1.txt:

hello world! hello ufida!
yes i do!
say something.

 

t2.txt:

cow is a cow.
word count job test.

 

 

调试代码:

public class WordCount {
static Logger log = Logger.getLogger(WordCount.class);
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
log.info("map 进程:" + Thread.currentThread().toString());
log.info("map 参数:key:" + key.get() + ";value:" + value);
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
log.info("word:" + word.toString());
output.collect(word, one);
}
}
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
log.info("reduce 进程:" + Thread.currentThread().toString());
String s = "";
int sum = 0;
while (values.hasNext()) {
IntWritable i = values.next();
s = s + "[" + i.get() + "]";
sum += i.get();
}
log.info("reduce 参数:key:" + key.toString() + ";values:" + s);
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
log.info("单词统计...");
JobConf conf = new JobConf(WordCount.class);
log.info("jar包位置:" + conf.getJar());
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path("/temp/in"));
FileOutputFormat.setOutputPath(conf, new Path("/temp/out"));
JobClient.runJob(conf);
}
}

 运行日志:

12/02/09 11:08:05 INFO test.WordCount: 单词统计...
12/02/09 11:08:05 INFO test.WordCount: jar包位置:D:workspaceseclipseWorkspace.metadata.pluginsorg.apache.hadoop.eclipsehadoopTest_WordCount.java-234599505300279609.jar
12/02/09 11:08:06 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
12/02/09 11:08:06 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
12/02/09 11:08:06 INFO mapred.FileInputFormat: Total input paths to process : 2
12/02/09 11:08:06 INFO mapred.JobClient: Running job: job_local_0001
12/02/09 11:08:06 INFO mapred.FileInputFormat: Total input paths to process : 2
12/02/09 11:08:06 INFO mapred.MapTask: numReduceTasks: 1
12/02/09 11:08:06 INFO mapred.MapTask: io.sort.mb = 100
12/02/09 11:08:06 INFO mapred.MapTask: data buffer = 79691776/99614720
12/02/09 11:08:06 INFO mapred.MapTask: record buffer = 262144/327680
12/02/09 11:08:06 INFO test.WordCount: map 进程:Thread[Thread-14,5,main]
12/02/09 11:08:06 INFO test.WordCount: map 参数:key:0;value:hello world! hello ufida!
12/02/09 11:08:06 INFO test.WordCount: word:hello
12/02/09 11:08:06 INFO test.WordCount: word:world!
12/02/09 11:08:06 INFO test.WordCount: word:hello
12/02/09 11:08:06 INFO test.WordCount: word:ufida!
12/02/09 11:08:06 INFO test.WordCount: map 进程:Thread[Thread-14,5,main]
12/02/09 11:08:06 INFO test.WordCount: map 参数:key:27;value:yes i do!
12/02/09 11:08:06 INFO test.WordCount: word:yes
12/02/09 11:08:06 INFO test.WordCount: word:i
12/02/09 11:08:06 INFO test.WordCount: word:do!
12/02/09 11:08:06 INFO test.WordCount: map 进程:Thread[Thread-14,5,main]
12/02/09 11:08:06 INFO test.WordCount: map 参数:key:38;value:say something.
12/02/09 11:08:06 INFO test.WordCount: word:say
12/02/09 11:08:06 INFO test.WordCount: word:something.
12/02/09 11:08:06 INFO mapred.MapTask: Starting flush of map output
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:do!;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:hello;values:[1][1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:i;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:say;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:something.;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:ufida!;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:world!;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:yes;values:[1]
12/02/09 11:08:07 INFO mapred.MapTask: Finished spill 0
12/02/09 11:08:07 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
12/02/09 11:08:07 INFO mapred.LocalJobRunner: hdfs://localhost:9000/temp/in/t1.txt:0+52
12/02/09 11:08:07 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000000_0' done.
12/02/09 11:08:07 INFO mapred.MapTask: numReduceTasks: 1
12/02/09 11:08:07 INFO mapred.MapTask: io.sort.mb = 100
12/02/09 11:08:07 INFO mapred.MapTask: data buffer = 79691776/99614720
12/02/09 11:08:07 INFO mapred.MapTask: record buffer = 262144/327680
12/02/09 11:08:07 INFO test.WordCount: map 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: map 参数:key:0;value:cow is a cow.
12/02/09 11:08:07 INFO test.WordCount: word:cow
12/02/09 11:08:07 INFO test.WordCount: word:is
12/02/09 11:08:07 INFO test.WordCount: word:a
12/02/09 11:08:07 INFO test.WordCount: word:cow.
12/02/09 11:08:07 INFO test.WordCount: map 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: map 参数:key:15;value:word count job test.
12/02/09 11:08:07 INFO test.WordCount: word:word
12/02/09 11:08:07 INFO test.WordCount: word:count
12/02/09 11:08:07 INFO test.WordCount: word:job
12/02/09 11:08:07 INFO test.WordCount: word:test.
12/02/09 11:08:07 INFO mapred.MapTask: Starting flush of map output
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:a;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:count;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:cow;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:cow.;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:is;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:job;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:test.;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:word;values:[1]
12/02/09 11:08:07 INFO mapred.MapTask: Finished spill 0
12/02/09 11:08:07 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
12/02/09 11:08:07 INFO mapred.LocalJobRunner: hdfs://localhost:9000/temp/in/t2.txt:0+35
12/02/09 11:08:07 INFO mapred.TaskRunner: Task 'attempt_local_0001_m_000001_0' done.
12/02/09 11:08:07 INFO mapred.LocalJobRunner:
12/02/09 11:08:07 INFO mapred.Merger: Merging 2 sorted segments
12/02/09 11:08:07 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 180 bytes
12/02/09 11:08:07 INFO mapred.LocalJobRunner:
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:a;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:count;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:cow;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:cow.;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:do!;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:hello;values:[2]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:i;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:is;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:job;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:say;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:something.;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:test.;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:ufida!;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:word;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:world!;values:[1]
12/02/09 11:08:07 INFO test.WordCount: reduce 进程:Thread[Thread-14,5,main]
12/02/09 11:08:07 INFO test.WordCount: reduce 参数:key:yes;values:[1]
12/02/09 11:08:07 INFO mapred.TaskRunner: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
12/02/09 11:08:07 INFO mapred.LocalJobRunner:
12/02/09 11:08:07 INFO mapred.TaskRunner: Task attempt_local_0001_r_000000_0 is allowed to commit now
12/02/09 11:08:07 INFO mapred.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://localhost:9000/temp/out
12/02/09 11:08:07 INFO mapred.LocalJobRunner: reduce > reduce
12/02/09 11:08:07 INFO mapred.TaskRunner: Task 'attempt_local_0001_r_000000_0' done.
12/02/09 11:08:07 INFO mapred.JobClient:
map 100% reduce 100%
12/02/09 11:08:07 INFO mapred.JobClient: Job complete: job_local_0001
12/02/09 11:08:07 INFO mapred.JobClient: Counters: 15
12/02/09 11:08:07 INFO mapred.JobClient:
FileSystemCounters
12/02/09 11:08:07 INFO mapred.JobClient:
FILE_BYTES_READ=62828
12/02/09 11:08:07 INFO mapred.JobClient:
HDFS_BYTES_READ=62311
12/02/09 11:08:07 INFO mapred.JobClient:
FILE_BYTES_WRITTEN=63761
12/02/09 11:08:07 INFO mapred.JobClient:
HDFS_BYTES_WRITTEN=125860
12/02/09 11:08:07 INFO mapred.JobClient:
Map-Reduce Framework
12/02/09 11:08:07 INFO mapred.JobClient:
Reduce input groups=16
12/02/09 11:08:07 INFO mapred.JobClient:
Combine output records=16
12/02/09 11:08:07 INFO mapred.JobClient:
Map input records=5
12/02/09 11:08:07 INFO mapred.JobClient:
Reduce shuffle bytes=0
12/02/09 11:08:07 INFO mapred.JobClient:
Reduce output records=16
12/02/09 11:08:07 INFO mapred.JobClient:
Spilled Records=32
12/02/09 11:08:07 INFO mapred.JobClient:
Map output bytes=154
12/02/09 11:08:07 INFO mapred.JobClient:
Map input bytes=87
12/02/09 11:08:07 INFO mapred.JobClient:
Combine input records=17
12/02/09 11:08:07 INFO mapred.JobClient:
Map output records=17
12/02/09 11:08:07 INFO mapred.JobClient:
Reduce input records=16

 本以为hadoop会开很多线程来运行一个job,但是从日志“Thread[Thread-14,5,main]”可以看出其实一直都是一个线程在运行,可能是因为数据量太小,没有超过一个块的大小,所以只开了一个线程吧。具体以后再研究一下源码。仔细看日志,可以发现其大概运行过程如下(伪代码):

checkNumberPath();//检查输入文件个数(2个)
for(i=0;i<2;i++){
Array lines = readFile(i);//读取文件所有的行
for(line : lines){
map();//解析出word,添加到Collector
combine();
}
}
reduce();

 从日志最后几行,map过程、combine过程、reduce过程 之前之后多少个输入和输出也能可能出大概过程。

最后

以上就是矮小画板为你收集整理的hadoop学习1——job执行过程的全部内容,希望文章能够帮你解决hadoop学习1——job执行过程所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(36)

评论列表共有 0 条评论

立即
投稿
返回
顶部