我是靠谱客的博主 酷酷未来,最近开发中收集的这篇文章主要介绍SLAM笔记 PL-ICP,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

从零开始搭二维激光SLAM --- 基于PL-ICP的帧间匹配

什么叫PL-ICP呢

PL-ICP 实际就是point-to-line ICP,是点到线的ICP方法.相比于传统的ICP方法,即点到点的匹配方法,PL-ICP在算法方面实际上是对误差形式进行了改进,其他方面基本相同,但迭代速度以及匹配精度

得到了很大的提升室内环境通常是结构化环境,即譬如墙壁等有众多规则的曲面,而激光数据实际是对实际环境中曲面的离散采样,因此,最好的误差尺度就是点到实际曲面的距离。我们目前通过传感器已经知晓激光点云数据,实际的重点就是对环境中曲面的恢复。PL-ICP采用的是用分段线性的方式近似替代曲面,从而获得激光点到实际曲面的距离。
pl-icp的代码命名为csm( Canonical Scan Matcher).

第一步安装CSM

sudo apt-get install ros-kinetic-csm

一般这个地方会出问题,解决办法有两个

deb http://packages.ros.org/ros/ubuntu xenial main
deb http://packages.ros.org/ros-shadow-fixed/ubuntu xenial main

如果不成功就换热点

使用csm时需要在CMake.list里添加

# Find csm project
find_package(PkgConfig)
pkg_check_modules(csm REQUIRED csm)
include_directories(
include
${catkin_INCLUDE_DIRS}
${csm_INCLUDE_DIRS}
)
link_directories(${csm_LIBRARY_DIRS})
#Create library
add_executable(${PROJECT_NAME}_scan_match_plicp_node src/scan_match_plicp.cc)
#Note we don't link against pcl as we're using header-only parts of the library
target_link_libraries( ${PROJECT_NAME}_scan_match_plicp_node
${catkin_LIBRARIES}
${csm_LIBRARIES}
)
add_dependencies(${PROJECT_NAME}_scan_match_plicp_node
${csm_EXPORTED_TARGETS}
${catkin_EXPORTED_TARGETS}
)

launch文件的配置 


<launch>
<!-- bag的地址与名称 -->
<arg name="bag_filename" default="/home/lx/bagfiles/lesson3.bag"/>
<!-- 使用bag的时间戳 -->
<param name="use_sim_time" value="true" />
<!-- base_link to front_laser_link -->
<node pkg="tf2_ros" type="static_transform_publisher" name="link_broadcaster"
args="0 0 0.254 0 0 3.1415926 base_link front_laser_link" />
<!-- 启动 plicp_odometry 节点 -->
<node name="lesson3_plicp_odometry_node"
pkg="lesson3" type="lesson3_plicp_odometry_node" output="screen" >
<rosparam file="$(find lesson3)/config/plicp_odometry.yaml" command="load"/>
</node>
<!-- launch rviz -->
<node name="rviz" pkg="rviz" type="rviz" required="true"
args="-d $(find lesson3)/config/plicp_odometry.rviz" />
<!-- play bagfile -->
<node name="playbag" pkg="rosbag" type="play"
args="--clock $(arg bag_filename)" />
</launch>

源程序

#include "lesson3/plicp_odometry.h"
#include "tf2_geometry_msgs/tf2_geometry_msgs.h"
ScanMatchPLICP::ScanMatchPLICP() : private_node_("~"), tf_listener_(tfBuffer_)
{
// 33[1;32m,33[0m 终端显示成绿色
ROS_INFO_STREAM("33[1;32m----> PLICP odometry started.33[0m");
laser_scan_subscriber_ = node_handle_.subscribe(
"laser_scan", 1, &ScanMatchPLICP::ScanCallback, this);
odom_publisher_ = node_handle_.advertise<nav_msgs::Odometry>("odom_plicp", 50);
// 参数初始化
InitParams();
scan_count_ = 0;
// 第一帧雷达还未到来
initialized_ = false;
base_in_odom_.setIdentity();
base_in_odom_keyframe_.setIdentity();
input_.laser[0] = 0.0;
input_.laser[1] = 0.0;
input_.laser[2] = 0.0;
// Initialize output_ vectors as Null for error-checking
output_.cov_x_m = 0;
output_.dx_dy1_m = 0;
output_.dx_dy2_m = 0;
}
ScanMatchPLICP::~ScanMatchPLICP()
{
}
/*
* ros与csm的参数初始化
*/
void ScanMatchPLICP::InitParams()
{
private_node_.param<std::string>("odom_frame", odom_frame_, "odom");
private_node_.param<std::string>("base_frame", base_frame_, "base_link");
// **** keyframe params: when to generate the keyframe scan
// if either is set to 0, reduces to frame-to-frame matching
private_node_.param<double>("kf_dist_linear", kf_dist_linear_, 0.1);
private_node_.param<double>("kf_dist_angular", kf_dist_angular_, 5.0 * (M_PI / 180.0));
kf_dist_linear_sq_ = kf_dist_linear_ * kf_dist_linear_;
private_node_.param<int>("kf_scan_count", kf_scan_count_, 10);
// **** CSM 的参数 - comments copied from algos.h (by Andrea Censi)
// Maximum angular displacement between scans
if (!private_node_.getParam("max_angular_correction_deg", input_.max_angular_correction_deg))
input_.max_angular_correction_deg = 45.0;
// Maximum translation between scans (m)
if (!private_node_.getParam("max_linear_correction", input_.max_linear_correction))
input_.max_linear_correction = 1.0;
// Maximum ICP cycle iterations
if (!private_node_.getParam("max_iterations", input_.max_iterations))
input_.max_iterations = 10;
// A threshold for stopping (m)
if (!private_node_.getParam("epsilon_xy", input_.epsilon_xy))
input_.epsilon_xy = 0.000001;
// A threshold for stopping (rad)
if (!private_node_.getParam("epsilon_theta", input_.epsilon_theta))
input_.epsilon_theta = 0.000001;
// Maximum distance for a correspondence to be valid
if (!private_node_.getParam("max_correspondence_dist", input_.max_correspondence_dist))
input_.max_correspondence_dist = 1.0;
// Noise in the scan (m)
if (!private_node_.getParam("sigma", input_.sigma))
input_.sigma = 0.010;
// Use smart tricks for finding correspondences.
if (!private_node_.getParam("use_corr_tricks", input_.use_corr_tricks))
input_.use_corr_tricks = 1;
// Restart: Restart if error is over threshold
if (!private_node_.getParam("restart", input_.restart))
input_.restart = 0;
// Restart: Threshold for restarting
if (!private_node_.getParam("restart_threshold_mean_error", input_.restart_threshold_mean_error))
input_.restart_threshold_mean_error = 0.01;
// Restart: displacement for restarting. (m)
if (!private_node_.getParam("restart_dt", input_.restart_dt))
input_.restart_dt = 1.0;
// Restart: displacement for restarting. (rad)
if (!private_node_.getParam("restart_dtheta", input_.restart_dtheta))
input_.restart_dtheta = 0.1;
// Max distance for staying in the same clustering
if (!private_node_.getParam("clustering_threshold", input_.clustering_threshold))
input_.clustering_threshold = 0.25;
// Number of neighbour rays used to estimate the orientation
if (!private_node_.getParam("orientation_neighbourhood", input_.orientation_neighbourhood))
input_.orientation_neighbourhood = 20;
// If 0, it's vanilla ICP
if (!private_node_.getParam("use_point_to_line_distance", input_.use_point_to_line_distance))
input_.use_point_to_line_distance = 1;
// Discard correspondences based on the angles
if (!private_node_.getParam("do_alpha_test", input_.do_alpha_test))
input_.do_alpha_test = 0;
// Discard correspondences based on the angles - threshold angle, in degrees
if (!private_node_.getParam("do_alpha_test_thresholdDeg", input_.do_alpha_test_thresholdDeg))
input_.do_alpha_test_thresholdDeg = 20.0;
// Percentage of correspondences to consider: if 0.9,
// always discard the top 10% of correspondences with more error
if (!private_node_.getParam("outliers_maxPerc", input_.outliers_maxPerc))
input_.outliers_maxPerc = 0.90;
// Parameters describing a simple adaptive algorithm for discarding.
//
1) Order the errors.
//
2) Choose the percentile according to outliers_adaptive_order.
//
(if it is 0.7, get the 70% percentile)
//
3) Define an adaptive threshold multiplying outliers_adaptive_mult
//
with the value of the error at the chosen percentile.
//
4) Discard correspondences over the threshold.
//
This is useful to be conservative; yet remove the biggest errors.
if (!private_node_.getParam("outliers_adaptive_order", input_.outliers_adaptive_order))
input_.outliers_adaptive_order = 0.7;
if (!private_node_.getParam("outliers_adaptive_mult", input_.outliers_adaptive_mult))
input_.outliers_adaptive_mult = 2.0;
// If you already have a guess of the solution, you can compute the polar angle
// of the points of one scan in the new position. If the polar angle is not a monotone
// function of the readings index, it means that the surface is not visible in the
// next position. If it is not visible, then we don't use it for matching.
if (!private_node_.getParam("do_visibility_test", input_.do_visibility_test))
input_.do_visibility_test = 0;
// no two points in laser_sens can have the same corr.
if (!private_node_.getParam("outliers_remove_doubles", input_.outliers_remove_doubles))
input_.outliers_remove_doubles = 1;
// If 1, computes the covariance of ICP using the method http://purl.org/censi/2006/icpcov
if (!private_node_.getParam("do_compute_covariance", input_.do_compute_covariance))
input_.do_compute_covariance = 0;
// Checks that find_correspondences_tricks gives the right answer
if (!private_node_.getParam("debug_verify_tricks", input_.debug_verify_tricks))
input_.debug_verify_tricks = 0;
// If 1, the field 'true_alpha' (or 'alpha') in the first scan is used to compute the
// incidence beta, and the factor (1/cos^2(beta)) used to weight the correspondence.");
if (!private_node_.getParam("use_ml_weights", input_.use_ml_weights))
input_.use_ml_weights = 0;
// If 1, the field 'readings_sigma' in the second scan is used to weight the
// correspondence by 1/sigma^2
if (!private_node_.getParam("use_sigma_weights", input_.use_sigma_weights))
input_.use_sigma_weights = 0;
}
/*
* 回调函数 进行数据处理
*/
void ScanMatchPLICP::ScanCallback(const sensor_msgs::LaserScan::ConstPtr &scan_msg)
{
// 如果是第一帧数据,首先进行初始化,先缓存一下cos与sin值
// 将 prev_ldp_scan_,last_icp_time_ 初始化
current_time_ = scan_msg->header.stamp;
if (!initialized_)
{
// caches the sin and cos of all angles
CreateCache(scan_msg);
// 获取机器人坐标系与雷达坐标系间的坐标变换
if (!GetBaseToLaserTf(scan_msg->header.frame_id))
{
ROS_WARN("Skipping scan");
return;
}
LaserScanToLDP(scan_msg, prev_ldp_scan_);
last_icp_time_ = current_time_;
initialized_ = true;
return;
}
// step1 进行数据类型转换
start_time_ = std::chrono::steady_clock::now();
LDP curr_ldp_scan;
LaserScanToLDP(scan_msg, curr_ldp_scan);
end_time_ = std::chrono::steady_clock::now();
time_used_ = std::chrono::duration_cast<std::chrono::duration<double>>(end_time_ - start_time_);
// std::cout << "n转换数据格式用时: " << time_used_.count() << " 秒。" << std::endl;
// step2 使用PLICP计算雷达前后两帧间的坐标变换
start_time_ = std::chrono::steady_clock::now();
ScanMatchWithPLICP(curr_ldp_scan, current_time_);
end_time_ = std::chrono::steady_clock::now();
time_used_ = std::chrono::duration_cast<std::chrono::duration<double>>(end_time_ - start_time_);
// std::cout << "整体函数处理用时: " << time_used_.count() << " 秒。" << std::endl;
}
/**
* 雷达数据间的角度是固定的,因此可以将对应角度的cos与sin值缓存下来,不用每次都计算
*/
void ScanMatchPLICP::CreateCache(const sensor_msgs::LaserScan::ConstPtr &scan_msg)
{
a_cos_.clear();
a_sin_.clear();
double angle;
for (unsigned int i = 0; i < scan_msg->ranges.size(); i++)
{
angle = scan_msg->angle_min + i * scan_msg->angle_increment;
a_cos_.push_back(cos(angle));
a_sin_.push_back(sin(angle));
}
input_.min_reading = scan_msg->range_min;
input_.max_reading = scan_msg->range_max;
}
/**
* 获取机器人坐标系与雷达坐标系间的坐标变换
*/
bool ScanMatchPLICP::GetBaseToLaserTf(const std::string &frame_id)
{
ros::Time t = ros::Time::now();
geometry_msgs::TransformStamped transformStamped;
// 获取tf并不是瞬间就能获取到的,要给1秒的缓冲时间让其找到tf
try
{
transformStamped = tfBuffer_.lookupTransform(base_frame_, frame_id,
t, ros::Duration(1.0));
}
catch (tf2::TransformException &ex)
{
ROS_WARN("%s", ex.what());
ros::Duration(1.0).sleep();
return false;
}
// 将获取的tf存到base_to_laser_中
tf2::fromMsg(transformStamped.transform, base_to_laser_);
laser_to_base_ = base_to_laser_.inverse();
return true;
}
/**
* 将雷达的数据格式转成 csm 需要的格式
*/
void ScanMatchPLICP::LaserScanToLDP(const sensor_msgs::LaserScan::ConstPtr &scan_msg, LDP &ldp)
{
unsigned int n = scan_msg->ranges.size();
ldp = ld_alloc_new(n);
for (unsigned int i = 0; i < n; i++)
{
// calculate position in laser frame
double r = scan_msg->ranges[i];
if (r > scan_msg->range_min && r < scan_msg->range_max)
{
// fill in laser scan data
ldp->valid[i] = 1;
ldp->readings[i] = r;
}
else
{
ldp->valid[i] = 0;
ldp->readings[i] = -1; // for invalid range
}
ldp->theta[i] = scan_msg->angle_min + i * scan_msg->angle_increment;
ldp->cluster[i] = -1;
}
ldp->min_theta = ldp->theta[0];
ldp->max_theta = ldp->theta[n - 1];
ldp->odometry[0] = 0.0;
ldp->odometry[1] = 0.0;
ldp->odometry[2] = 0.0;
ldp->true_pose[0] = 0.0;
ldp->true_pose[1] = 0.0;
ldp->true_pose[2] = 0.0;
}
/**
* 使用PLICP进行帧间位姿的计算
*/
void ScanMatchPLICP::ScanMatchWithPLICP(LDP &curr_ldp_scan, const ros::Time &time)
{
// CSM is used in the following way:
// The scans are always in the laser frame
// The reference scan (prevLDPcan_) has a pose of [0, 0, 0]
// The new scan (currLDPScan) has a pose equal to the movement
// of the laser in the laser frame since the last scan
// The computed correction is then propagated using the tf machinery
prev_ldp_scan_->odometry[0] = 0.0;
prev_ldp_scan_->odometry[1] = 0.0;
prev_ldp_scan_->odometry[2] = 0.0;
prev_ldp_scan_->estimate[0] = 0.0;
prev_ldp_scan_->estimate[1] = 0.0;
prev_ldp_scan_->estimate[2] = 0.0;
prev_ldp_scan_->true_pose[0] = 0.0;
prev_ldp_scan_->true_pose[1] = 0.0;
prev_ldp_scan_->true_pose[2] = 0.0;
input_.laser_ref = prev_ldp_scan_;
input_.laser_sens = curr_ldp_scan;
// 匀速模型,速度乘以时间,得到预测的odom坐标系下的位姿变换
double dt = (time - last_icp_time_).toSec();
double pr_ch_x, pr_ch_y, pr_ch_a;
GetPrediction(pr_ch_x, pr_ch_y, pr_ch_a, dt);
tf2::Transform prediction_change;
CreateTfFromXYTheta(pr_ch_x, pr_ch_y, pr_ch_a, prediction_change);
// account for the change since the last kf, in the fixed frame
// 将odom坐标系下的坐标变换 转换成 base_in_odom_keyframe_坐标系下的坐标变换
prediction_change = prediction_change * (base_in_odom_ * base_in_odom_keyframe_.inverse());
// the predicted change of the laser's position, in the laser frame
// 将base_link坐标系下的坐标变换 转换成 雷达坐标系下的坐标变换
tf2::Transform prediction_change_lidar;
prediction_change_lidar = laser_to_base_ * base_in_odom_.inverse() * prediction_change * base_in_odom_ * base_to_laser_;
input_.first_guess[0] = prediction_change_lidar.getOrigin().getX();
input_.first_guess[1] = prediction_change_lidar.getOrigin().getY();
input_.first_guess[2] = tf2::getYaw(prediction_change_lidar.getRotation());
// If they are non-Null, free covariance gsl matrices to avoid leaking memory
if (output_.cov_x_m)
{
gsl_matrix_free(output_.cov_x_m);
output_.cov_x_m = 0;
}
if (output_.dx_dy1_m)
{
gsl_matrix_free(output_.dx_dy1_m);
output_.dx_dy1_m = 0;
}
if (output_.dx_dy2_m)
{
gsl_matrix_free(output_.dx_dy2_m);
output_.dx_dy2_m = 0;
}
start_time_ = std::chrono::steady_clock::now();
// 调用csm进行plicp计算
sm_icp(&input_, &output_);
end_time_ = std::chrono::steady_clock::now();
time_used_ = std::chrono::duration_cast<std::chrono::duration<double>>(end_time_ - start_time_);
// std::cout << "PLICP计算用时: " << time_used_.count() << " 秒。" << std::endl;
tf2::Transform corr_ch;
if (output_.valid)
{
// 雷达坐标系下的坐标变换
tf2::Transform corr_ch_l;
CreateTfFromXYTheta(output_.x[0], output_.x[1], output_.x[2], corr_ch_l);
// 将雷达坐标系下的坐标变换 转换成 base_link坐标系下的坐标变换
corr_ch = base_to_laser_ * corr_ch_l * laser_to_base_;
// 更新 base_link 在 odom 坐标系下 的坐标
base_in_odom_ = base_in_odom_keyframe_ * corr_ch;
latest_velocity_.linear.x = corr_ch.getOrigin().getX() / dt;
latest_velocity_.angular.z = tf2::getYaw(corr_ch.getRotation()) / dt;
}
else
{
ROS_WARN("not Converged");
}
// 发布tf与odom话题
PublishTFAndOdometry();
// 检查是否需要更新关键帧坐标
if (NewKeyframeNeeded(corr_ch))
{
// 更新关键帧坐标
ld_free(prev_ldp_scan_);
prev_ldp_scan_ = curr_ldp_scan;
base_in_odom_keyframe_ = base_in_odom_;
}
else
{
ld_free(curr_ldp_scan);
}
last_icp_time_ = time;
}
/**
* 推测从上次icp的时间到当前时刻间的坐标变换
* 使用匀速模型,根据当前的速度,乘以时间,得到推测出来的位移
*/
void ScanMatchPLICP::GetPrediction(double &prediction_change_x,
double &prediction_change_y,
double &prediction_change_angle,
double dt)
{
// 速度小于 1e-6 , 则认为是静止的
prediction_change_x = latest_velocity_.linear.x < 1e-6 ? 0.0 : dt * latest_velocity_.linear.x;
prediction_change_y = latest_velocity_.linear.y < 1e-6 ? 0.0 : dt * latest_velocity_.linear.y;
prediction_change_angle = latest_velocity_.linear.z < 1e-6 ? 0.0 : dt * latest_velocity_.linear.z;
if (prediction_change_angle >= M_PI)
prediction_change_angle -= 2.0 * M_PI;
else if (prediction_change_angle < -M_PI)
prediction_change_angle += 2.0 * M_PI;
}
/**
* 从x,y,theta创建tf
*/
void ScanMatchPLICP::CreateTfFromXYTheta(double x, double y, double theta, tf2::Transform &t)
{
t.setOrigin(tf2::Vector3(x, y, 0.0));
tf2::Quaternion q;
q.setRPY(0.0, 0.0, theta);
t.setRotation(q);
}
/**
* 发布tf与odom话题
*/
void ScanMatchPLICP::PublishTFAndOdometry()
{
geometry_msgs::TransformStamped tf_msg;
tf_msg.header.stamp = current_time_;
tf_msg.header.frame_id = odom_frame_;
tf_msg.child_frame_id = base_frame_;
tf_msg.transform = tf2::toMsg(base_in_odom_);
// 发布 odom 到 base_link 的 tf
tf_broadcaster_.sendTransform(tf_msg);
nav_msgs::Odometry odom_msg;
odom_msg.header.stamp = current_time_;
odom_msg.header.frame_id = odom_frame_;
odom_msg.child_frame_id = base_frame_;
tf2::toMsg(base_in_odom_, odom_msg.pose.pose);
odom_msg.twist.twist = latest_velocity_;
// 发布 odomemtry 话题
odom_publisher_.publish(odom_msg);
}
/**
* 如果平移大于阈值,角度大于阈值,则创新新的关键帧
* @return 需要创建关键帧返回true, 否则返回false
*/
bool ScanMatchPLICP::NewKeyframeNeeded(const tf2::Transform &d)
{
scan_count_++;
if (fabs(tf2::getYaw(d.getRotation())) > kf_dist_angular_)
return true;
if (scan_count_ == kf_scan_count_)
{
scan_count_ = 0;
return true;
}
double x = d.getOrigin().getX();
double y = d.getOrigin().getY();
if (x * x + y * y > kf_dist_linear_sq_)
return true;
return false;
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "lesson3_scan_match_plicp_node"); // 节点的名字
ScanMatchPLICP scan_match_plicp;
ros::spin();
return 0;
}

 原文忘记说头文件了

#ifndef LESSON2_SCAN_MATCH_PLICP
#define LESSON2_SCAN_MATCH_PLICP
#include <cmath>
#include <vector>
#include <chrono>
// ros
#include <ros/ros.h>
#include <sensor_msgs/LaserScan.h>
#include <geometry_msgs/TwistStamped.h>
#include <geometry_msgs/TransformStamped.h>
#include <nav_msgs/Odometry.h>
// tf2
#include <tf2/utils.h>
#include <tf2/LinearMath/Transform.h>
#include <tf2_ros/transform_listener.h>
#include "tf2_ros/transform_broadcaster.h"
// csm
#include <csm/csm_all.h>
#undef min
#undef max
class ScanMatchPLICP
{
private:
ros::NodeHandle node_handle_;
// ros中的句柄
ros::NodeHandle private_node_;
// ros中的私有句柄
ros::Subscriber laser_scan_subscriber_; // 声明一个Subscriber
ros::Publisher odom_publisher_;
// 声明一个Publisher
ros::Time last_icp_time_;
ros::Time current_time_;
geometry_msgs::Twist latest_velocity_;
tf2_ros::Buffer tfBuffer_;
tf2_ros::TransformListener tf_listener_;
tf2_ros::TransformBroadcaster tf_broadcaster_;
tf2::Transform base_to_laser_;
tf2::Transform laser_to_base_;
tf2::Transform base_in_odom_;
// base_link在odom坐标系下的坐标
tf2::Transform base_in_odom_keyframe_;
// base_link在odom坐标系下的keyframe的坐标
// parameters
bool initialized_;
std::string odom_frame_;
std::string base_frame_;
double kf_dist_linear_;
double kf_dist_linear_sq_;
double kf_dist_angular_;
int kf_scan_count_;
int scan_count_;
std::vector<double> a_cos_;
std::vector<double> a_sin_;
std::chrono::steady_clock::time_point start_time_;
std::chrono::steady_clock::time_point end_time_;
std::chrono::duration<double> time_used_;
// csm
sm_params input_;
sm_result output_;
LDP prev_ldp_scan_;
void InitParams();
void CreateCache(const sensor_msgs::LaserScan::ConstPtr &scan_msg);
bool GetBaseToLaserTf(const std::string &frame_id);
void LaserScanToLDP(const sensor_msgs::LaserScan::ConstPtr &scan_msg, LDP &ldp);
void ScanMatchWithPLICP(LDP &curr_ldp_scan, const ros::Time &time);
void GetPrediction(double &prediction_change_x, double &prediction_change_y, double &prediction_change_angle, double dt);
void CreateTfFromXYTheta(double x, double y, double theta, tf2::Transform& t);
void PublishTFAndOdometry();
bool NewKeyframeNeeded(const tf2::Transform &d);
public:
ScanMatchPLICP();
~ScanMatchPLICP();
void ScanCallback(const sensor_msgs::LaserScan::ConstPtr &scan_msg);
};
#endif // LESSON2_SCAN_MATCH_PLICP

最后

以上就是酷酷未来为你收集整理的SLAM笔记 PL-ICP的全部内容,希望文章能够帮你解决SLAM笔记 PL-ICP所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(34)

评论列表共有 0 条评论

立即
投稿
返回
顶部