我是靠谱客的博主 独特短靴,最近开发中收集的这篇文章主要介绍clickhouse 子查询_clickHouse 常用命令,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

---客户端链接工具

clickhouse-client -m -u root -p root

--大小写敏感的

CREATE TEMPORARY TABLE IF NOT EXISTS test.member_new_simple2 ENGINE = Memory

AS SELECT ID,user_id,member_grade,accum_amount from  test.member_new;

-- SHOW PROCESSLIST

查询正在进行执行的sql操作

关于 update/delete操作

clickhouse关于update/delete操作是异步后台进行,而且成本很高,所以尽量减少和避免进行update/delete操作

通过 select * from system.mutations    可以判断后台操作进行是否完成

-------------- create --------------------

create TABLE test.test( id Int32,create_date Date ,c2 Nullable(String) )

engine=MergeTree(create_date,id,(c3,c2),8192);

create TABLE test.test2( id Int32,create_date Date ,c2 Nullable(String) )

engine=MergeTree(create_date,id,8192);

--支持联合索引

MergeTree(EventDate, (CounterID, EventDate), 8192)

MergeTree(EventDate, intHash32(UserID), (CounterID, EventDate, intHash32(UserID)), 8192)

CREATE TABLE t (a UInt8) ENGINE = Memory;

split -b 20g table_name.sql user_group

-------------- ALTER--------------------

ALTER查询只支持MergeTree表,。该查询有几个变体。

ALTER TABLE [db].name [ON CLUSTER cluster] ADD|DROP|MODIFY COLUMN

--更改列的类型

alter TABLE test.ontime_wpp_t MODIFY COLUMN TailNum Nullable(String);

alter TABLE test.ontime_wpp_t ADD COLUMN TailNum2 Nullable(String)  after   Div5TailNum ;

alter TABLE test.ontime_wpp_t drop COLUMN TailNum2;

表变更数据系统监控

select * from system.mutations where is_done = 0 order by create_time desc limit 1;

删除表

drop table cdm_dwd.dwd_ord_car_sharing_df on cluster crm_4shards_1replicas;

select max(ckbizdate) from cdm_dwd.dwd_mkt_coupon_ord_df

变更表名

RENAME TABLE test.ontime_wpp_t to test.ontime_wpp_t2;

集群操作

RENAME TABLE cdm_dwd.dwd_ord_carsh_base_df2 to cdm_dwd.dwd_ord_carsh_base_df on cluster crm_4shards_1replicas;

SET param = value

允许您设置param值,如果指定了全局,则为会话或服务器(全局)设置设置。

在创建全局设置时,设置并不适用于已经运行的会话,包括当前会话。它只会用于新会话。当服务器重新启动时,

使用SET的全局设置就会丢失。要在服务器重新启动后进行设置

OPTIMIZE table test.ontime;

仅支持MergeTree引擎, 用于回收闲置的数据库空间,当表上的数据行被删除时,

所占据的磁盘空间并没有立即被回收,使用了OPTIMIZE TABLE命令后这些空间将被回收,

并且对磁盘上的数据行进行重排

数据导出

在相关节点执行

echo 'select * from test.ads_user_portrait_vertical_df_cls' | curl localhost:8123?database=test -uroot:root -d @- > table_name.sql

2、导入数据,以tab作为分割符:

导入数据库的本机执行:cat table_name.sql | clickhouse-client --query="INSERT INTO database.table_name FORMAT TabSeparated"

cat /root/user_lable_local_mid_cluster.tgz | clickhouse-client --user hadoop --password hadoop --query="INSERT INTO lmmbase.user_lable_local_mid_cluster FORMAT CSV";

cat /home/hadoop/work_wpp/user_label_uid_cluster | clickhouse-client --user hadoop --password hadoop --query="INSERT INTO lmmbase.user_label_uid_cluster FORMAT CSV";

cat /tmp/test_user2| clickhouse-client --user hadoop --password hadoop --query="INSERT INTO lmmbase.test_user2 FORMAT CSV";

-------------- INSERT--------------------

不严格插入数据,没有出现的列自动填充为默认值

INSERT INTO [db.]table [(c1, c2, c3)] VALUES (v11, v12, v13), (v21, v22)

严格插入数据,每一列都必须出现在上面

INSERT INTO [db.]table [(c1, c2, c3)] FORMAT Values (v11, v12, v13), (v21, v22, v23)

cat /tmp/user_point_info | clickhouse-client --query="INSERT INTO test.user_point_info FORMAT CSV";

cat /home/hadoop/ontime | clickhouse-client  --query="INSERT INTO test.ontime_wpp FORMAT CSV";

cat /root/wpp5.log | clickhouse-client --query="INSERT INTO test.test FORMAT CSV";

clickhouse-client -m --user hadoop --password hadoop --query="truncate table lmmbase.user_label_uid on cluster crm_4shards_1replicas";

ssh hadoop@dn1 "/bin/bash /home/hadoop/app/otherApp/truncate_user_label_uid_data.sh"

clickhouse-client --query=" alter table  test.ads_user_portrait_vertical_df delete where create_time ='2019-10-17' ";

clickhouse-client --query=" alter table  default.test_df delete where ckbizdate ='2019-10-17' ";

相关压测,同时执行相关sql,看下机器负载

*/2 * * * * clickhouse-client -m --query="select t_mac,t_type,count(*) cnt from carendpoint_porlog_cls group by t_mac,t_type order by cnt desc limit 100;"

*/2 * * * * clickhouse-client  -m --query="select t_mac,count(*) cnt from carendpoint_porlog_cls group by t_mac order by cnt desc limit 100;"

*/2 * * * * clickhouse-client  -m --query="select t_type,count(*) cnt from carendpoint_porlog_cls group by t_type order by cnt desc limit 100;"

*/1 * * * * clickhouse-client  -m --query="select t_ip,t_type,count(*) cnt from carendpoint_porlog_cls group by t_ip,t_type order by cnt desc limit 100;" >> /root/wpp1.log

*/1 * * * * clickhouse-client  -m --query="select t_ip,count(*) cnt from carendpoint_porlog_cls group by t_ip order by cnt desc limit 100;" >> /root/wpp2.log

*/1 * * * * clickhouse-client  -m --query="select event,count(*) cnt from carendpoint_porlog_cls group by event order by cnt desc limit 100;" >> /root/wpp2.log

直接支持hdfs

drop table test_hdfs;

CREATE  TABLE test_hdfs

(

rowid Int64,

create_date String,

memo String

)

ENGINE=HDFS('hdfs://gtdata03:8020/input/test2/test2.txt','CSV');

sql 文件执行

clickhouse-client -h  127.0.0.1 -m -d system -q "select * from parts " > test.sql

dn4

clickhouse-client -h  127.0.0.1 -m -d system -q '/home/hadoop/ch.sql' > test.sql

select today()-365;

drop table lmmbase.user_label_uid_hive_cluster on cluster crm_4shards_1replicas;

drop table lmmbase.user_label_uid_hive on cluster crm_4shards_1replicas;

create database  on cluster crm_4shards_1replicas;

row_number 函数支持,下面是支持 !!!!!!!!!!!!!

select *,rowNumberInAllBlocks() rn

from(

select id,create_date,c2

from test

order by  create_date desc

limit 2 by id

)aa ;

SELECT *, rn +1 -min_rn current, max_rn - min_rn + 1 last FROM (

SELECT *, rowNumberInAllBlocks() rn FROM (

SELECT i_device, i_time

FROM tbl

ORDER BY i_device, i_time

) t

) t1 LEFT JOIN (

SELECT i_device, min(rn) min_rn, max(rn) max_rn FROM (

SELECT *, rowNumberInAllBlocks() rn FROM (

SELECT i_device, i_time

FROM tbl

ORDER BY i_device, i_time

) t

) t GROUP BY i_device

) t2 USING (i_device)

select trainId,ap_mac,

rowNumberInAllBlocks() rn

from carendpoint_usermacprobe

group by trainId,ap_mac

limit 10;

select trainId,ap_mac,

rowNumberInAllBlocks() rn

from carendpoint_usermacprobe

group by trainId,ap_mac

order by  trainId desc

limit 3 by trainId;

dn3

select id,create_date,c2,

rowNumberInAllBlocks() rn

from test

group by  id,create_date,c2

order by  create_date desc

limit 3 by id;

select *,rowNumberInAllBlocks() rn

from(

select id,create_date,c2

from test

group by  id,create_date,c2

order by  create_date desc

limit 2 by id

)aa ;

insert into test select 11,'2019-07-25','tt5';

select trainId,ap_mac,

ROW_NUMBER() OVER (PARTITION BY trainId order by trainId  ) AS  row

from carendpoint_usermacprobe limit ;

----------------------delete

删除表的数据,对主键支持的可以,非主键有时数据删除有问题

alter table user_label_uid_hive delete where id = 1000000010002

alter table user_label_uid_hive delete where id = 1000000010002

truncate table ads_user_portrait_vertical_df_cls   ON CLUSTER crm_4shards_1replicas;

-- 数据去重

select user_id, order_id, create_time, update_time from unity_order

where create_time> '2018-09-01' order by create_time asc limit 2 by user_id limit 20;

insert into user2( ROWKEY2, AV, IMEI, MAC, CHID, PB, PLAT,UID,PTIME) values

( "20190905", "2.1.6", "54b6aeba8581413ca487eda6caa62a55", "7c:76:68:19:34:16", "NULL22", "HONOR", "2", "tt", "2019-09-05");

,( "20190905_USERID257641565864162599", "1.0.0", "USERID257641565864162599", "other", "other", "iPhone", "3", "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJhY2NvdW50SWQiOiIxMTA0OTQzMTM5Mjg3ODU5MjAwIiwibW9iaWxlIjoiMTc2ODIzMDIwNDkiLCJ0eXAiOiJKV1QiLCJleHAiOjE1Njg1Mjc3MDgsImNvcnBDb2RlIjoiQ1JHVCIsImFsZyI6IkhTMjU2IiwiaWF0IjoxNTY3NjYzNzA4LCJsb2dpblNvdXJjZSI6IjEifQ.tE_59BIsNqGdbUe5HslFZ93_vyNQE2EUHwvlyOkCQhc", "2019-09-05")

CREATE TABLE test.user2 (`ROWKEY2` String, `AV` String, `IMEI` String, `MAC` String, `CHID` String, `PB` String, `PLAT` String, `UID` String, `PTIME` Date) ENGINE = MergeTree(PTIME, ROWKEY2, 8192)

insert into user2( ROWKEY2, AV, IMEI, MAC, CHID,  PB, PLAT,UID,PTIME) values

("20190905", "2.1.6", "54b6aeba8581413ca487eda6caa62a55", "7c:76:68:19:34:16",  "ttt", "HONOR", "2", "tt", "2019-09-05");

alter table user_label_uid_hive delete where id = 1000000010002

alter table user_label_uid_hive delete where user_id = 10035

select id,user_id from  user_label_uid_hive  where user_id = 10035

alter table user_label_uid_hive update browse_category_id = 11 where mobile_number in (13482154101) ;

alter table carendpoint_porlog_cls update utime = 999 where t_mac='VIVO-Y55A';

select count(*) from carendpoint_porlog_cls where t_mac='VIVO-Y55A' limit 10;

select * from carendpoint_porlog where t_mac='VIVO-Y55A' limit 10;

alter table carendpoint_porlog update user_agent = '999' where t_mac='VIVO-Y55A' ;

alter table carendpoint_porlog update user_agent = '666' where utime=-7200 and t_type='MI8-xiaomishouji';

OPTIMIZE table carendpoint_porlog;

select * from carendpoint_porlog where utime=-7200 and t_type='MI8-xiaomishouji'

更新时加上索引优化。这样查询才快点,十亿级别更新,十秒完成。

alter table carendpoint_porlog update user_agent = '999000' where t_mac='VIVO-Y55A' ;

alter table carendpoint_porlog delete where t_mac='VIVO-Y55A' ;

alter table carendpoint_porlog delete where utime=-7200  ;

select * from carendpoint_porlog where t_mac='VIVO-Y55A' limit 10;

select count(*) from carendpoint_porlog where t_mac='VIVO-Y55A' limit 10;

alter table user_label_uid_hive update browse_category_id = 19999 where  browse_category_id in (18880);

select count(*) from  user_label_uid_hive  where browse_category_id in (19999);

alter table user_label_uid_hive update browse_category_id = 11888 where  browse_category_id in (11);

select count(*) from  user_label_uid_hive  where browse_category_id in (11888);

alter table user_label_uid_hive delete where mobile_number in (13028815355) ;

--- 直接所有表数据删除

truncate table lmmbase.user_label_uid on cluster crm_4shards_1replicas;

create database test on cluster crm_4shards_1replicas;

truncate table default.t22_cluster on cluster 'crm_4shards_1replicas';

alter table cdm_dws.dws_log_full_di delete where gbizdate = '20190930'  on cluster crm_4shards_1replicas;

alter table cdm_dws.dws_log_full_di  on cluster crm_4shards_1replicas delete where gbizdate = '20190930'  ;

drop  table cdm_dwd.dwd_ord_carsh_base_df_cls on cluster crm_4shards_1replicas;

rename table cdm_dwd.dwd_ord_carsh_base_df_cls on cluster crm_4shards_1replicas;

create TABLE default.t3 ( id Int32,create_date Date ,c2 String,c3 Nullable(String) )

engine=MergeTree(create_date,id,8192);

create TABLE default.t31 ON CLUSTER crm_4shards_1replicas( id Int32,create_date Date ,c2 String,c3 Nullable(String) )

engine=MergeTree(create_date,id,8192);

create TABLE default.t3 on cluster crm_4shards_1replicas ( id Int32,create_date Date ,c2 Nullable(String) )

engine=MergeTree(create_date,id,(c3,c2),8192);

create table default.t3 on cluster crm_4shards_1replicas (id UInt8, name String, t Date)

engine = MergeTree(t, id, id, 2);

create table default.t3_cluster on cluster crm_4shards_1replicas (id UInt8, name String, t Date)

engine = Distributed('crm_4shards_1replicas', 'default', 't3', rand());

--------------------cxw --直接建表

drop  DATABASE db2 ON CLUSTER crm_4shards_1replicas;

truncate table default.t1 on cluster crm_4shards_1replicas;

truncate table lmmbase.test_user2 on cluster crm_4shards_1replicas;

truncate table lmmbase.user_label_uid_hive on cluster crm_4shards_1replicas;

create TABLE default.porlog_test on cluster crm_4shards_1replicas ( mac String ,train_id Nullable(String),create_date Date) engine=MergeTree(create_date,mac,8192);

create table default.porlog_test_cls on cluster crm_4shards_1replicas ( mac String ,train_id Nullable(String),create_date Date )

engine = Distributed('crm_4shards_1replicas', 'default', 'porlog_test', rand());

create TABLE test.test2( id Int32,create_date Date ,c2 Nullable(String) )

engine=MergeTree(create_date,id,8192);

insert into default.test_cluster values

(11,'2018-10-10','11'),

(22,'2018-10-11','22'),

(33,'2018-10-11','33');

select id,create_date,c2,any(c3) from default.test_cluster;

select id,create_date,c2 from default.test_cluster where id<5

union all

select id,create_date,c2 from default.test_cluster where id>11

drop table crm_pub.prod_startdistrict_detail_cluster  on cluster crm_4shards_1replicas;

drop table test.user_point_info2_cls  on cluster crm_4shards_1replicas;

drop table crm_pub.biz_category_cluster  on cluster crm_4shards_1replicas;

drop table lmmbase.user_label_uid_hive  on cluster crm_4shards_1replicas;

drop database crm_user  on cluster crm_4shards_1replicas;

drop database crm_market  on cluster crm_4shards_1replicas;

create database cdm_dws  on cluster crm_4shards_1replicas;

drop database test  on cluster crm_4shards_1replicas;

drop table lmmbase.user_label_uid_hive  on cluster crm_4shards_1replicas;

drop table lmmbase.user_label_uid_hive_cluster  on cluster crm_4shards_1replicas;

clickhouse-client -m

---------------------------------output--------------------

select * from test.test_user2 INTO OUTFILE '/tmp/test_user2' format CSV;

select * from test.user_point_info limit 500000 INTO OUTFILE '/tmp/user_point_info' format CSV;

-- 复杂表查询

drop TABLE l.user_orders;

create TABLE test.user_orders( order_id Int64,create_time Date,user_id Nullable(String),

user_name Nullable(String),order_status Nullable(String),user_status Nullable(String) )

engine=MergeTree(create_time,order_id,8192);

insert into test.user_orders

select distinct order_id,create_time,user_id,user_name,order_status,user_status

from(

select order_id, user_no AS user_id,order_status,toDate(create_time) as create_time

from test.unity_order )

ANY LEFT JOIN

(select user_id,user_name,user_status,

mobile_number from  default.user_user )

USING user_id ;

-------------------------select  相关格式代码-------------------------

--- union all

select id,create_date,c2 from test.test where id<5

union all

select id,create_date,c2 from test.test where id>11;

select groupArray(variable_id) from test.seo_test limit 10;

-- TSKV

SELECT Carrier, avg(DepDelay > 10) * 1000 AS c3 FROM ontime

WHERE Year = 2007 GROUP BY Carrier ORDER BY Carrier FORMAT TSKV;

--csv 逗号分割

SELECT Carrier, avg(DepDelay > 10) * 1000 AS c3 FROM ontime

WHERE Year = 2007 GROUP BY Carrier ORDER BY Carrier FORMAT CSV;

--JSON 逗号分割,可用于 http接口调用

SELECT Carrier, avg(DepDelay > 10) * 1000 AS c3 FROM ontime

WHERE Year = 2007 GROUP BY Carrier ORDER BY Carrier FORMAT JSON;

--XML 逗号分割,可用于 http接口调用

SELECT Carrier, avg(DepDelay > 10) * 1000 AS c3 FROM ontime

WHERE Year = 2007 GROUP BY Carrier ORDER BY Carrier FORMAT XML;

---生成的数据打包成json 数据格式

select user_id,groupArray(order_id) from test.unity_order GROUP BY user_id limit 10;

wget -O- -q 'http://localhost:8123/?query=SELECT 1'

----- http 请求查询结果

echo 'SELECT Carrier, avg(DepDelay > 10) * 1000 AS c3 FROM test.ontime WHERE Year = 2007 GROUP BY Carrier ORDER BY Carrier' | curl 'http://localhost:8123/?query=' --data-binary @-

格式化返回结果

echo 'SELECT Carrier, avg(DepDelay > 10) * 1000 AS c3 FROM test.ontime WHERE Year = 2007 GROUP BY Carrier ORDER BY Carrier  FORMAT Pretty' | curl 'http://localhost:8123/?query=' --data-binary @-

echo 'CREATE TABLE t1 (a UInt8) ENGINE = Memory' | POST 'http://localhost:8123/'

echo 'insert into t1 (a) values (10)' | POST 'http://localhost:8123/'

GET "http://localhost:8123?query=select * from t"

echo 'drop table t1' | POST 'http://localhost:8123/'

jdbc 方式连接

https://github.com/yandex/clickhouse-jdbc

-----web访问界面

https://github.com/tabixio/tabix

clickhouse作为目前所有开源MPP计算框架中计算速度最快的,它在做多列的表,同时行数很多的表的查询时,性能是很让人兴奋的,但是在做表的join时,它的性能是不如单宽表查询的,但是了解了clickhouse在做join的时候的处理过程,利用的好的话,也会带来很大的效率提升,下面就详细介绍一下:

1.clickhouse做LEFT JOIN时的操作过程

比如做两表JOIN时,会优先计算右表结果,将右表结果存储到内存中,然后跟左边表的数据进行做match

2.join操作的秒级产出

首先,clickhouse在做单表查询时速度是快的惊人的,因此只要左表和右表查出来的数据量是不大的,那么整个查询响应时间仍然会是秒级产出的。

-- ANY LEFT JOIN -- 匹配一条则结束

select distinct order_id,user_id,user_name,user_status,

mobile_number as mobile,order_status

from(

select order_id, user_no AS user_id,order_status

from test.unity_order where order_id in(55719970 ,55720002)

) ANY LEFT JOIN

(select user_id,user_name,user_status,

mobile_number from  default.user_user )

USING user_id FORMAT CSV;

-- ALL LEFT JOIN

select distinct order_id,user_id,user_name,user_status,

mobile_number as mobile,order_status

from(

select order_id, user_no AS user_id,order_status

from test.unity_order where order_id in(55719970 ,55720002)

) ALL LEFT JOIN

(select user_id,user_name,user_status,

mobile_number from  default.user_user )

USING user_id FORMAT CSV;

-- 三个表相连

select distinct order_id,user_id,user_name,user_status,

mobile_number as mobile,order_status,send_time,send_id

from (

select distinct order_id,user_id,user_name,user_status,

mobile_number,order_status

from(

select order_id, user_no AS user_id,order_status

from test.unity_order_cluster where order_id in(55719970 ,55720002)

) ANY INNER JOIN

(select user_id,user_name,user_status,

mobile_number from  default.user_user )

using user_id

)

ANY left JOIN

(select target as mobile_number,send_time,id as send_id

from  test.mkt_sms_log_cluster )

USING mobile_number

FORMAT CSV;

---------------array join

-- https://clickhouse.yandex/docs/en/query_language/select/

--------------- array join

CREATE TABLE arrays_test (s String, arr Array(UInt8)) ENGINE = Memory;

INSERT INTO arrays_test VALUES ('Hello', [1,2]), ('World', [3,4,5]), ('Goodbye', []);

INSERT INTO arrays_test VALUES ('Goodbye2', [23]);

SELECT * FROM arrays_test;

SELECT s, arr FROM arrays_test ARRAY JOIN arr;

SELECT s, arr, a FROM arrays_test ARRAY JOIN arr AS a;

-- 针对map进行相加操作

-- 相同大小的多个数组可以在数组连接子句中进行逗号分隔。在这种情况下,连接是同时执行的

SELECT s, arr, a, num, mapped

FROM arrays_test ARRAY JOIN arr AS a, arrayEnumerate(arr) AS num, arrayMap(x -> x + 2, arr) AS mapped;

SELECT s, arr, a, num, arrayEnumerate(arr)

FROM arrays_test ARRAY JOIN arr AS a, arrayEnumerate(arr) AS num

---------------nested join

CREATE TABLE nested_test (s String, nesta Nested(x UInt8, y UInt32)) ENGINE = Memory;

INSERT INTO nested_test VALUES ('Hello', [1,2], [10,20]),

('World', [3,4,5], [30,40,50]), ('Goodbye', [], []);

INSERT INTO nested_test VALUES ('Goodbye_nest', [3,3], [101,201]);

SELECT * FROM nested_test;

SELECT s, nesta.x, nesta.y FROM nested_test ARRAY JOIN nesta;

针对某个进行查询

SELECT s, nesta.x, nesta.y FROM nested_test ARRAY JOIN nesta where nesta.x=3;

--一个用户下挂了多个订单

SELECT s, nesta.x, nesta.y FROM nested_test ARRAY JOIN nesta where s='Hello';

--对x值进行拆分

SELECT s, nesta.x, nesta.y FROM nested_test ARRAY JOIN nesta.x;

--对x值进行拆分

SELECT s, nesta.x, nesta.y FROM nested_test ARRAY JOIN nesta.y;

-- 对x,y进行拆分

SELECT s, nesta.x, nesta.y FROM nested_test ARRAY JOIN nesta.x, nesta.y;

---- 对数组进行枚举

SELECT s, num FROM nested_test  ARRAY JOIN arrayEnumerate(nesta.x) as num;

--

SELECT s, n.x, n.y, nesta.x, nesta.y, num FROM nested_test

ARRAY JOIN nesta AS n, arrayEnumerate(nesta.x) as num;

------------------------nested join 2级嵌套 ----------------------------------

---

CREATE TABLE nested_test2 (s String, nest1 Nested(x UInt8, y UInt32),nest2 Nested(x2 Int64,y2 Int64))

ENGINE = Memory;

INSERT INTO nested_test2 VALUES ('Hello',[1,2],[10,20],[11,21],[11,21]),

('World', [3,4,5], [30,40,50],[31,41,51], [301,401,501]), ('Goodbye', [], [], [], []),('Goodbye_nest', [3,3], [101,201],[31,31], [1011,2011]);

INSERT INTO nested_test2 VALUES ('Goodbye_nest', [3,3], [101,201],[31,31], [1011,2011]);

SELECT * FROM nested_test2;

SELECT s, nest1.x, nest1.y,nest2.x2 FROM nested_test2 ARRAY JOIN nest1;

针对某个进行查询

SELECT s, nest1.x, nest1.y FROM nested_test2 ARRAY JOIN nest1 where nest1.x=3;

--一个用户下挂了多个订单

SELECT s, nest1.x, nest1.y,nest2.x2 ,nest2.y2  FROM nested_test2 ARRAY JOIN nest1 where s='Hello';

--对x值进行拆分

SELECT s, nest1.x, nest1.y FROM nested_test2 ARRAY JOIN nest1.x;

--对x值进行拆分

SELECT s, nest1.x, nest1.y FROM nested_test2 ARRAY JOIN nest1.y;

-- 对x,y进行拆分

SELECT s, nest1.x, nest1.y FROM nested_test2 ARRAY JOIN nest1.x, nest1.y;

---- 对数组进行枚举

SELECT s, num FROM nested_test2  ARRAY JOIN arrayEnumerate(nest1.x) as num;

--

SELECT s, n.x, n.y, nest1.x, nest1.y,num FROM nested_test2

ARRAY JOIN nest1 AS n, arrayEnumerate(nest1.x) as num;

select order_id,user_id,user_no from unity_order where user_no is null limit 10;

--  临时表(TEMPORARY)

在所有情况下,如果指定临时表,就会创建临时表。临时表有以下特点:

临时表在会话结束时消失,包括连接丢失。

一个临时表是用内存引擎创建的。其他表引擎不受支持。

DB不能为临时表指定。它是在数据库之外创建的。

如果临时表与另一个表的名称相同,并且查询指定表名而不指定DB,则使用临时表。

对于分布式查询处理,查询中使用的临时表被传递给远程服务器。

CREATE TEMPORARY TABLE IF NOT EXISTS test.member_new_cp ENGINE = MergeTree

AS SELECT * from  test.member_new;

--success

CREATE TEMPORARY TABLE IF NOT EXISTS test.member_new_cp ENGINE = Memory

AS SELECT * from  test.member_new;

-- 创建视图

CREATE VIEW member_new_view AS SELECT * from test.member_new;

CREATE VIEW member_new_view_simple AS SELECT ID,user_id,member_grade from test.member_new;

drop table member_new_orders_view;

CREATE VIEW member_new_orders_view AS

SELECT user_id,count(order_id) as cnt

from  (

SELECT user_id,member_grade from test.member_new

)any left join

(select user_no as user_id,order_id from test.unity_order

)using user_id

group by user_id

order by cnt desc;

drop table member_new_orders_view;

CREATE VIEW member_new_orders_view AS

SELECT user_id,count(order_id) as cnt

from  (

SELECT user_id,member_grade from test.member_new

)any left join

(select user_no as user_id,order_id from test.unity_order

)using user_id

group by user_id

order by cnt desc;

-- 全匹配数据 all left join

drop table member_new_orders_view_all;

CREATE VIEW member_new_orders_view_all AS

SELECT user_id,count(order_id) as cnt

from  (

SELECT user_id,member_grade from test.member_new

)all left join

(select user_no as user_id,order_id from test.unity_order

)using user_id

group by user_id

order by cnt desc;

--查询操作符和子查询可以发生在查询的任何部分,包括聚合函数和lambda函数

select id,create_date,c2,(select max(AirlineID) from test.ontime_wpp) as aa from test.test;

SELECT

EventDate,

avg(UserID IN

(

SELECT UserID

FROM test.hits

WHERE EventDate = toDate('2014-03-17')

)) AS ratio

FROM test.hits

GROUP BY EventDate

ORDER BY EventDate Asc

select length(remark) from test.unity_order limit 10;

select order_id,length(remark) len,remark ,str(remark,0,3)

from test.unity_order where length(remark) >= 1 limit 100;

--

create table t1 (id UInt16, name String) ENGINE=TinyLog;

create table t2 (id UInt16, name String) ENGINE=TinyLog;

create table t3 (id UInt16, name String) ENGINE=TinyLog;

insert into t1(id, name) values (1, 'first');

insert into t1(id, name) values (12, 'first2');

insert into t1(id, name) values (13, 'first4');

insert into t2(id, name) values (2, 'xxxx');

insert into t3(id, name) values (12, 'i am in t3');

insert into t1(id, name) values (1, 'first');

insert into test_df select 11, 'first2','2019-10-13';

CREATE TABLE default.test_df (`code` String, `description` Nullable(String), `ckbizdate` Date) ENGINE = MergeTree(ckbizdate, code, 8192);

insert into test_df select 132, 'first2','2019-10-20';

ssh dn2 'clickhouse-client --query="alter table  default.test_df delete where ckbizdate =2019-10-20 " '

--表进行合并查询,不支持更新操作

create table t_merge (id UInt16, name String) ENGINE=Merge(currentDatabase(), '^t');

select  * from t_merge

select _table,* from t_merge order by id desc

---

create table t_repalce (gmt  Date, id UInt16, name String, point UInt16)

ENGINE=ReplacingMergeTree(gmt, (name), 10, point);

insert into t_repalce (gmt, id, name, point) values ('2017-07-10', 1, 'a', 20);

insert into t_repalce (gmt, id, name, point) values ('2017-07-10', 1, 'a', 30);

insert into t_repalce (gmt, id, name, point) values ('2017-07-11', 1, 'a', 20);

insert into t_repalce (gmt, id, name, point) values ('2017-07-11', 1, 'a', 30);

insert into t_repalce (gmt, id, name, point) values ('2017-07-11', 1, 'a', 10);

insert into t_repalce (gmt, id, name, point) values ('2017-07-11', 2, 'a', 10);

insert into t_repalce (gmt, id, name, point) values ('2017-07-11', 3, 'b', 10);

insert into t_repalce (gmt, id, name, point) values ('2017-07-11', 3, 'c', 10);

insert into t_repalce (gmt, id, name, point) values ('2017-07-11', 3, 'c', 20);

--  多值判断

SELECT

number,

caseWithoutExpression((number > 5) AND (number < 10), number + 1,

(number >= 10) AND (number < 15), number * 2, 0)

FROM system.numbers

WHERE number < 20

LIMIT 16;

-- 行转列

select user_id,groupUniqArray(order_id)

from unity_order

group by user_id

having count(*) >4 limit 10;

select user_id,arrayMap(x-> toString(x), groupArray(order_id))

from unity_order where order_id>0 and user_id != ''  group by user_id  having count(*) > 4 limit 10;

-- json 格式化返回结果

select user_id,concat('[',toString(groupUniqArray(order_id)),']' ) json

from unity_order

where user_id != ''

group by user_id

having count(*) >4 limit 10;

参考技术

https://www.zouyesheng.com/clickhouse.html#toc8

https://blog.csdn.net/vagabond6/article/details/79556968

https://zhuanlan.zhihu.com/p/22165241

常用函数

https://blog.csdn.net/vagabond6/article/details/79580371

————————————————

版权声明:本文为CSDN博主「wppwpp1」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/wppwpp1/java/article/details/106021361

最后

以上就是独特短靴为你收集整理的clickhouse 子查询_clickHouse 常用命令的全部内容,希望文章能够帮你解决clickhouse 子查询_clickHouse 常用命令所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(49)

评论列表共有 0 条评论

立即
投稿
返回
顶部