概述
我已经为Web爬网对象开发了以下代码。
它需要两个日期作为输入。然后创建这两个日期之间的日期列表,并将每个日期附加到包含位置的天气信息的网页URL。然后它将HTML数据表转换为Dataframe,之后将数据存储为存储中的csv文件(基本链接为:https://www.wunderground.com/history/daily/ir/mashhad/OIMM/date/2019-1-3,在本例中您可以看到日期为2019-1-3):
from datetime import timedelta, date
from bs4 import BeautifulSoup
from selenium import webdriver
import pandas as pd
from furl import furl
import os
import time
class WebCrawler():
def __init__(self, st_date, end_date):
if not os.path.exists('Data'):
os.makedirs('Data')
self.path = os.path.join(os.getcwd(), 'Data')
self.driver = webdriver.PhantomJS()
self.base_url = 'https://www.wunderground.com/history/daily/ir/mashhad/OIMM/date/'
self.st_date = st_date
self.end_date = end_date
def date_list(self):
# Create list of dates between two dates given as inputs.
dates = []
total_days = int((self.end_date - self.st_date).days + 1)
for i in range(total_days):
date = self.st_date + timedelta(days=i)
dates.append(date.strftime('%Y-%m-%d'))
return dates
def create_link(self, attachment):
# Attach dates to base link
f = furl(self.base_url)
f.path /= attachment
f.path.normalize()
return f.url
def open_link(self, link):
# Opens link and visits page and returns html source code of page
self.driver.get(link)
html = self.driver.page_source
return html
def table_to_df(self, html):
# Finds table of weather data and converts it into pandas dataframe and returns it
soup = BeautifulSoup(html, 'lxml')
table = soup.find("table",{"class":"tablesaw-sortable"})
dfs = pd.read_html(str(table))
df = dfs[0]
return df
def to_csv(self, name, df):
# Save the dataframe as csv file in the defined path
filename = name + '.csv'
df.to_csv(os.path.join(self.path,filename), index=False)
这是我想要使用WebCrawler对象的方式:
date1 = date(2018, 12, 29)
date2 = date(2019, 1, 1)
# Initialize WebCrawler object
crawler = WebCrawler(st_date=date1, end_date=date2)
dates = crawler.date_list()
for day in dates:
print('**************************')
print('PROCESSING : ', day)
link = crawler.create_link(day)
print('WAITING... ')
time.sleep(3)
print('VISIT WEBPAGE ... ')
html = crawler.open_link(link)
print('DATA RETRIEVED ... ')
df = crawler.table_to_df(html)
print(df.head(3))
crawler.to_csv(day, df)
print('DATA SAVED ...')
发生的问题是循环的第一次迭代运行完美,但第二次循环停止时出现错误,表示No tables where found(发生在table = soup.find("table",{"class":"tablesaw-sortable"})行),这是因为页面源是由WebCrawler.open_link在网页完全加载网页内容之前返回的,包括表(包含天气信息)。网站也有可能拒绝请求,因为它使服务器太忙。
无论如何我们可以构建一个循环,一直试图打开链接,直到它找到表,或者至少等到表加载然后返回表?
答案
您可以让selenium等待特定元素。在您的情况下,它将是类名为“tablesaw-sortable”的表。我强烈建议您使用CSS选择器来查找此元素,因为获取所有表元素的速度快且容易出错。
这是CSS选择器,为您预制table.tablesaw-sortable。将selenium设置为等待该元素加载。
另一答案
我使用@mildmelon建议的https://stackoverflow.com/a/26567563/4159473解决方案重写代码,每次向服务器发送请求和请求页面源时,我也使用了一些延迟:
from datetime import timedelta, date
from bs4 import BeautifulSoup
from selenium import webdriver
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.by import By
from selenium.common.exceptions import TimeoutException
import pandas as pd
from furl import furl
import os
import time
class WebCrawler():
def __init__(self, st_date, end_date):
if not os.path.exists('Data'):
os.makedirs('Data')
self.path = os.path.join(os.getcwd(), 'Data')
self.driver = webdriver.PhantomJS()
self.delay_for_page = 7
self.base_url = 'https://www.wunderground.com/history/daily/ir/mashhad/OIMM/date/'
self.st_date = st_date
self.end_date = end_date
def date_list(self):
# Create list of dates between two dates given as inputs.
dates = []
total_days = int((self.end_date - self.st_date).days + 1)
for i in range(total_days):
date = self.st_date + timedelta(days=i)
dates.append(date.strftime('%Y-%m-%d'))
return dates
def create_link(self, attachment):
# Attach dates to base link
f = furl(self.base_url)
f.path /= attachment
f.path.normalize()
return f.url
def open_link(self, link):
# Opens link and visits page and returns html source code of page
self.driver.get(link)
myElem = WebDriverWait(self.driver, self.delay_for_page)
.until(EC.presence_of_element_located((By.CLASS_NAME, 'tablesaw-sortable')))
def table_to_df(self, html):
# Finds table of weather data and converts it into pandas dataframe and returns it
soup = BeautifulSoup(html, 'lxml')
table = soup.find("table",{"class":"tablesaw-sortable"})
dfs = pd.read_html(str(table))
df = dfs[0]
return df
def to_csv(self, name, df):
# Save the dataframe as csv file in the defined path
filename = name + '.csv'
df.to_csv(os.path.join(self.path,filename), index=False)
date1 = date(2019, 2, 1)
date2 = date(2019, 3, 5)
# Initialize WebCrawler object
crawler = WebCrawler(st_date=date1, end_date=date2)
dates = crawler.date_list()
for day in few_dates:
print('**************************')
print('DATE : ', day)
link = crawler.create_link(day)
print('WAITING ....')
print('')
time.sleep(12)
print('OPENING LINK ... ')
try:
crawler.open_link(link)
html = crawler.driver.page_source
print( "DATA IS FETCHED")
df = crawler.table_to_df(html)
print(df.head(3))
crawler.to_csv(day, df)
print('DATA SAVED ...')
except TimeoutException:
print( "NOT FETCHED ...!!!")
天气信息没有问题。我想每次请求之间的延迟会带来更好的性能。线myElem = WebDriverWait(self.driver, self.delay_for_page).until(EC.presence_of_element_located((By.CLASS_NAME, 'tablesaw-sortable')))也提高了速度。
最后
以上就是贤惠便当为你收集整理的page source 保存html,如何让phantomJS webdriver等到加载特定的HTML元素然后返回page.source?...的全部内容,希望文章能够帮你解决page source 保存html,如何让phantomJS webdriver等到加载特定的HTML元素然后返回page.source?...所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复