概述
在上家公司工作时,设计的日志收集与实时分析架构,还是比较简单的:
flume-ng + rocketmq + storm + redis + 前端展示
消息队列部分,我们刚开始采用的是kafka,但 kafka在支持回溯消费和重复消费方面比较弱,同时在数据安全方面也相对弱一些,后来我们改为阿里的rocketmq。
考虑到我们的数据量也不是很大,已经能够足够支撑,但在rocketmq这层,有时会因为网络异常问题,会产生消息堆积,导致消息队列被冲爆,稳定性还不是非常高,后来咨询了其他部门的同事,他们的做法是,在消息队列这一层次,额外增加了一层mongodb,消息队列这层仅保留消息的索引信息,消息的实体信息保存在mongodb中,可以很好地回避此问题,后来由于各种原因就没有再去尝试此方法......
其他一些常用方案:
logstash + elasticsearch + kibana
fluentd + influxdb + grafana
flume-ng + kafka + storm
kafka + spark streaming + redis
转载于:https://blog.51cto.com/sofar/1649875
最后
以上就是甜美保温杯为你收集整理的日志实时分析架构的全部内容,希望文章能够帮你解决日志实时分析架构所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复