概述
主要内容:
- OMP的算法流程
- OMP的MATLAB实现
- 一维信号的实验与结果
- 测量数M与重构成功概率关系的实验与结果
- 稀疏度K与重构成功概率关系的实验与结果
一、OMP的算法流程
二、OMP的MATLAB实现(CS_OMP.m)
function [ theta ] = CS_OMP( y,A,iter ) % CS_OMP % y = Phi * x % x = Psi * theta % y = Phi * Psi * theta % 令 A = Phi*Psi, 则y=A*theta % 现在已知y和A,求theta % iter = 迭代次数 [m,n] = size(y); if m<n y = y'; %y should be a column vector end [M,N] = size(A); %传感矩阵A为M*N矩阵 theta = zeros(N,1); %用来存储恢复的theta(列向量) At = zeros(M,iter); %用来迭代过程中存储A被选择的列 pos_num = zeros(1,iter); %用来迭代过程中存储A被选择的列序号 res = y; %初始化残差(residual)为y for ii=1:iter %迭代t次,t为输入参数 product = A'*res; %传感矩阵A各列与残差的内积 [val,pos] = max(abs(product)); %找到最大内积绝对值,即与残差最相关的列 At(:,ii) = A(:,pos); %存储这一列 pos_num(ii) = pos; %存储这一列的序号 A(:,pos) = zeros(M,1); %清零A的这一列,其实此行可以不要,因为它与残差正交 % y=At(:,1:ii)*theta,以下求theta的最小二乘解(Least Square) theta_ls = (At(:,1:ii)'*At(:,1:ii))^(-1)*At(:,1:ii)'*y;%最小二乘解 % At(:,1:ii)*theta_ls是y在At(:,1:ii)列空间上的正交投影 res = y - At(:,1:ii)*theta_ls; %更新残差 end theta(pos_num)=theta_ls;% 恢复出的theta end
三、一维信号的实验与结果(CS_Reconstuction_Test.m)
%压缩感知重构算法OMP测试 %以一维信号为例 clear all;close all;clc; M = 64;%观测值个数 N = 256;%信号x的长度 K = 10;%信号x的稀疏度 Index_K = randperm(N); x = zeros(N,1); x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的 Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵,x=Psi*theta Phi = randn(M,N);%测量矩阵为高斯矩阵 A = Phi * Psi;%传感矩阵 y = Phi * x;%得到观测向量y %% 恢复重构信号x tic theta = CS_OMP(y,A,K); x_r = Psi * theta;% x=Psi * theta toc %% 绘图 figure; plot(x_r,'k.-');%绘出x的恢复信号 hold on; plot(x,'r');%绘出原信号x hold off; legend('Recovery','Original') fprintf('n恢复残差:'); norm(x_r-x)%恢复残差
四、测量数M与重构成功概率关系的实验与结果(CS_Reconstuction_MtoPercentage.m)
% 压缩感知重构算法测试CS_Reconstuction_MtoPercentage.m % 绘制参考文献中的Fig.1 % 参考文献:Joel A. Tropp and Anna C. Gilbert % Signal Recovery From Random Measurements Via Orthogonal Matching % Pursuit,IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 12, % DECEMBER 2007. clear all;close all;clc; %% 参数配置初始化 CNT = 1000; %对于每组(K,M,N),重复迭代次数 N = 256; %信号x的长度 Psi = eye(N); %x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta K_set = [4,12,20,28,36]; %信号x的稀疏度集合 Percentage = zeros(length(K_set),N); %存储恢复成功概率 %% 主循环,遍历每组(K,M,N) tic for kk = 1:length(K_set) K = K_set(kk); %本次稀疏度 M_set = K:5:N; %M没必要全部遍历,每隔5测试一个就可以了 PercentageK = zeros(1,length(M_set)); %存储此稀疏度K下不同M的恢复成功概率 for mm = 1:length(M_set) M = M_set(mm); %本次观测值个数 P = 0; for cnt = 1:CNT %每个观测值个数均运行CNT次 Index_K = randperm(N); x = zeros(N,1); x(Index_K(1:K)) = 5*randn(K,1); %x为K稀疏的,且位置是随机的 Phi = randn(M,N); %测量矩阵为高斯矩阵 A = Phi * Psi; %传感矩阵 y = Phi * x; %得到观测向量y theta = CS_OMP(y,A,K); %恢复重构信号theta x_r = Psi * theta; % x=Psi * theta if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功 P = P + 1; end end PercentageK(mm) = P/CNT*100; %计算恢复概率 end Percentage(kk,1:length(M_set)) = PercentageK; end toc save MtoPercentage1000 %运行一次不容易,把变量全部存储下来 %% 绘图 S = ['-ks';'-ko';'-kd';'-kv';'-k*']; figure; for kk = 1:length(K_set) K = K_set(kk); M_set = K:5:N; L_Mset = length(M_set); plot(M_set,Percentage(kk,1:L_Mset),S(kk,:));%绘出x的恢复信号 hold on; end hold off; xlim([0 256]); legend('K=4','K=12','K=20','K=28','K=36'); xlabel('Number of measurements(M)'); ylabel('Percentage recovered'); title('Percentage of input signals recovered correctly(N=256)(Gaussian)');
五、稀疏度K与重构成功概率关系的实验与结果(CS_Reconstuction_KtoPercentage.m)
% 压缩感知重构算法测试CS_Reconstuction_KtoPercentage.m % 绘制参考文献中的Fig.2 % 参考文献:Joel A. Tropp and Anna C. Gilbert % Signal Recovery From Random Measurements Via Orthogonal Matching % Pursuit,IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 12, % DECEMBER 2007. % clear all;close all;clc; %% 参数配置初始化 CNT = 1000; %对于每组(K,M,N),重复迭代次数 N = 256; %信号x的长度 Psi = eye(N); %x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta M_set = [52,100,148,196,244]; %测量值集合 Percentage = zeros(length(M_set),N); %存储恢复成功概率 %% 主循环,遍历每组(K,M,N) tic for mm = 1:length(M_set) M = M_set(mm); %本次测量值个数 K_set = 1:5:ceil(M/2); %信号x的稀疏度K没必要全部遍历,每隔5测试一个就可以了 PercentageM = zeros(1,length(K_set)); %存储此测量值M下不同K的恢复成功概率 for kk = 1:length(K_set) K = K_set(kk); %本次信号x的稀疏度K P = 0; for cnt = 1:CNT %每个观测值个数均运行CNT次 Index_K = randperm(N); x = zeros(N,1); x(Index_K(1:K)) = 5*randn(K,1); %x为K稀疏的,且位置是随机的 Phi = randn(M,N); %测量矩阵为高斯矩阵 A = Phi * Psi; %传感矩阵 y = Phi * x; %得到观测向量y theta = CS_OMP(y,A,K); %恢复重构信号theta x_r = Psi * theta; % x=Psi * theta if norm(x_r-x)<1e-6 %如果残差小于1e-6则认为恢复成功 P = P + 1; end end PercentageM(kk) = P/CNT*100; %计算恢复概率 end Percentage(mm,1:length(K_set)) = PercentageM; end toc save KtoPercentage1000test %运行一次不容易,把变量全部存储下来 %% 绘图 S = ['-ks';'-ko';'-kd';'-kv';'-k*']; figure; for mm = 1:length(M_set) M = M_set(mm); K_set = 1:5:ceil(M/2); L_Kset = length(K_set); plot(K_set,Percentage(mm,1:L_Kset),S(mm,:));%绘出x的恢复信号 hold on; end hold off; xlim([0 125]); legend('M=52','M=100','M=148','M=196','M=244'); xlabel('Sparsity level(K)'); ylabel('Percentage recovered'); title('Percentage of input signals recovered correctly(N=256)(Gaussian)');
六、参考文章
http://blog.csdn.net/jbb0523/article/details/45268141
更多OMP请参考:浅谈压缩感知(九):正交匹配追踪算法OMP
最后
以上就是落后猎豹为你收集整理的浅谈压缩感知(二十一):压缩感知重构算法之正交匹配追踪(OMP)的全部内容,希望文章能够帮你解决浅谈压缩感知(二十一):压缩感知重构算法之正交匹配追踪(OMP)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复