概述
1. 单例设计模式介绍
- 所谓类的单例设计模式,就是采取一定的方法保证在整个的软件系统中,对某个类只能存在一个对象实例, 并且该类只提供一个取得其对象实例的方法(静态方法)
- 比如 Hibernate 的 SessionFactory,它充当数据存储源的代理,并负责创建 Session 对象。SessionFactory 并不是轻量级的,一般情况下,一个项目通常只需要一个 SessionFactory 就够,这是就会使用到单例模式。
2. 单例设计模式八种方式
- 饿汉式(静态常量)
- 饿汉式(静态代码块)
- 懒汉式(线程不安全)
- 懒汉式(线程安全,同步方法)
- 懒汉式(线程安全,同步代码块)
- 双重检查
- 静态内部类
- 枚举
注意:标红的是可以使用,加粗的是推荐使用
3. 饿汉式(静态常量)
3.1. 应用实例
- 构造器私有化 (防止 new )
- 类的内部创建对象
- 向外暴露一个静态的公共方法。getInstance
- 代码实现
public class SingletonTest01 {
public static void main(String[] args) {
// 测试
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
//两个对象的 hashCode 一样
System.out.println("instance.hashCode=" + instance.hashCode());
System.out.println("instance2.hashCode=" + instance2.hashCode());
}
}
// 饿汉式(静态变量)
class Singleton {
// 1. 构造器私有化,外部不能 new
private Singleton() {}
// 2. 本类内部创建对象实例
private final static Singleton instance = new Singleton();
// 3. 提供一个公有的静态方法,返回实例对象
public static Singleton getInstance() {
return instance;
}
}
3.2. 优缺点说明
- 优点:这种写法比较简单,就是在类装载的时候就完成实例化。避免了线程同步问题。
- 缺点:在类装载的时候就完成实例化,没有达到 Lazy Loading 的效果。如果从始至终从未使用过这个实例,则会造成内存的浪费
- 这种方式基于 classloder 机制避免了多线程的同步问题,不过,instance 在类装载时就实例化,在单例模式中大多数都是调用 getInstance 方法, 但是导致类装载的原因有很多种,因此不能确定有其他的方式(或者其他的静态方法)导致类装载,这时候初始化 instance 就没有达到 lazy loading 的效果
- 结论:这种单例模式可用,可能造成内存浪费(如果使用,就得保证这个实例一定要用到)
4. 饿汉式(静态代码块)
4.1. 应用实例
public class SingletonTest02 {
public static void main(String[] args) {
// 测试
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
//两个对象的 hashCode 一样
System.out.println("instance.hashCode=" + instance.hashCode());
System.out.println("instance2.hashCode=" + instance2.hashCode());
}
}
// 饿汉式(静态代码块)
class Singleton {
// 1. 构造器私有化,外部不能 new
private Singleton() {}
// 2. 本类内部创建对象实例
private static Singleton instance;
static { // 在静态代码块中,创建单例实例
instance = new Singleton();
}
// 3. 提供一个公有的静态方法,返回实例对象
public static Singleton getInstance() {
return instance;
}
}
4.2. 优缺点说明
- 这种方式和上面的方式其实类似,只不过将类实例化的过程放在了静态代码块中,也是在类装载的时候,就执行静态代码块中的代码,初始化类的实例。优缺点和上面是一样的。
- 结论:这种单例模式可用,但是可能造成内存浪费
5. 懒汉式(线程不安全)
5.1. 应用实例
public class SingletonTest03 {
public static void main(String[] args) {
// 测试
System.out.println("懒汉式 1 , 线程不安全~");
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
//两个对象的 hashCode 一样
System.out.println("instance.hashCode=" + instance.hashCode());
System.out.println("instance2.hashCode=" + instance2.hashCode());
}
}
// 懒汉式
class Singleton {
private static Singleton instance;
// 提供一个公有的静态方法,当使用到该方法时,才去创建 instance
// 即懒汉式
public static Singleton getInstance() {
if(instance == null) {
instance = new Singleton();
}
return instance;
}
}
5.2. 优缺点说明
- 起到了 Lazy Loading 的效果,但是只能在单线程下使用。
- 如果在多线程下,一个线程进入了 if (singleton == null)判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例。所以在多线程环境下不可使用这种方式
- 结论:在实际开发中,不要使用这种方式.
6. 懒汉式(线程安全,同步方法)
6.1 应用实例
public class SingletonTest04 {
public static void main(String[] args) {
// 测试
System.out.println("懒汉式 2 , 线程安全~");
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
//两个对象的 hashCode 一样
System.out.println("instance.hashCode=" + instance.hashCode());
System.out.println("instance2.hashCode=" + instance2.hashCode());
}
}
//懒汉式(线程安全,同步方法)
class Singleton {
//私有实例
private static Singleton instance;
//私有构造器
private Singleton(){}
//提供一个静态的公有方法,加入同步处理的代码,解决线程安全问题
//即懒汉式
public static synchronized Singleton getInstance() {
if(instance == null) {
instance = new Singleton();
}
return instance;
}
}
6.2. 优缺点说明
- 解决了线程安全问题
- 效率太低了,每个线程在想获得类的实例时候,执行 getInstance()方法都要进行同步。而其实这个方法只执行一次实例化代码就够了,后面的想获得该类实例,直接 return 就行了。方法进行同步效率太低
结论:在实际开发中,不推荐使用这种方式
7. 懒汉式(线程安全,同步代码块)
7.1. 应用实例
class Singleton {
private static Singleton instance;
private Singleton(){}
public static Singleton getInstance() {
if(instance == null) {
synchronized (Singleton.class) {
instance = new Singleton();
}
}
return instance;
}
}
注意:不推荐使用
8. 双重检查
8.1. 应用实例
public class SingletonTest06 {
public static void main(String[] args) {
// 测试
System.out.println("双重检查");
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
//两个对象的 hashCode 一样
System.out.println("instance.hashCode=" + instance.hashCode());
System.out.println("instance2.hashCode=" + instance2.hashCode());
}
}
//双重检查
class Singleton {
private static volatile Singleton instance;
private Singleton() {}
//提供一个静态的公有方法,加入双重检查代码,解决线程安全问题, 同时解决懒加载问题
//同时保证了效率, 推荐使用
public static synchronized Singleton getInstance() {
if(instance == null) {
synchronized (Singleton.class) {
if(instance == null) {
instance = new Singleton();
}
}
}
return instance;
}
}
8.2. 优缺点说明
- Double-Check 概念是多线程开发中常使用到的,如代码中所示,我们进行了两次 if (singleton == null)检查,这样就可以保证线程安全了。
- 这样,实例化代码只用执行一次,后面再次访问时,判断 if (singleton == null),直接 return 实例化对象,也避免的反复进行方法同步.
- 线程安全;延迟加载;效率较高
- 结论:在实际开发中,推荐使用这种单例设计模式
9. 静态内部类
9.1. 代码演示
public class SingletonTest07 {
public static void main(String[] args) {
// 测试
System.out.println("使用静态内部类完成单例模式");
Singleton instance = Singleton.getInstance();
Singleton instance2 = Singleton.getInstance();
System.out.println(instance == instance2); // true
// 两个对象的 hashCode 一样
System.out.println("instance.hashCode=" + instance.hashCode());
System.out.println("instance2.hashCode=" + instance2.hashCode());
}
}
// 静态内部类完成, 推荐使用
class Singleton {
//private static volatile Singleton instance;
// 构造器私有化
private Singleton() {
}
// 写一个静态内部类,该类中有一个静态属性 Singleton
public static class SingletonInstance {
private static final Singleton INSTANCE = new Singleton();
}
// 提供一个静态的公有方法,直接返回 SingletonInstance.INSTANCE
public static synchronized Singleton getInstance() {
return SingletonInstance.INSTANCE;
}
}
9.2. 优缺点说明
- 这种方式采用了类装载的机制来保证初始化实例时只有一个线程。
- 静态内部类方式在 Singleton 类被装载时并不会立即实例化,而是在需要实例化时,调用 getInstance 方法,才会装载 SingletonInstance 类,从而完成 Singleton 的实例化。
- 类的静态属性只会在第一次加载类的时候初始化,所以在这里,JVM 帮助我们保证了线程的安全性,在类进行初始化时,别的线程是无法进入的。
- 优点:避免了线程不安全,利用静态内部类特点实现延迟加载,效率高
- 结论:推荐使用.
10. 枚举
10.1. 代码演示
public class SingletonTest08 {
public static void main(String[] args) {
Singleton instance = Singleton.INSTANCE;
Singleton instance2 = Singleton.INSTANCE;
System.out.println(instance == instance2);
System.out.println(instance.hashCode());
System.out.println(instance2.hashCode());
instance.sayOK();
}
}
// 使用枚举,可以实现单例, 推荐
enum Singleton {
INSTANCE; // 属性
public void sayOK() {
System.out.println("ok~");
}
}
10.2. 优缺点说明
- 这借助 JDK1.5 中添加的枚举来实现单例模式。不仅能避免多线程同步问题,而且还能防止反序列化重新创建新的对象。
- 这种方式是 Effective Java 作者 Josh Bloch 提倡的方式
- 结论:推荐使用
11. 单例模式在 JDK 应用的源码分析
- 我们 JDK 中,java.lang.Runtime 就是经典的单例模式(饿汉式)
- 代码分析+Debug 源码+代码说明
public class Runtime {
private static Runtime currentRuntime = new Runtime();
/**
* Returns the runtime object associated with the current Java application.
* Most of the methods of class <code>Runtime</code> are instance
* methods and must be invoked with respect to the current runtime object.
*
* @return the <code>Runtime</code> object associated with the current
* Java application.
*/
public static Runtime getRuntime() {
return currentRuntime;
}
/** Don't let anyone else instantiate this class */
private Runtime() {}
..............
12. 单例模式注意事项和细节说明
- 单例模式保证了 系统内存中该类只存在一个对象,节省了系统资源,对于一些需要频繁创建销毁的对象,使用单例模式可以提高系统性能
- 当想实例化一个单例类的时候,必须要记住使用相应的获取对象的方法,而不是使用 new
- 单例模式使用的场景:需要频繁的进行创建和销毁的对象、创建对象时耗时过多或耗费资源过多(即:重量级对象),但又经常用到的对象、工具类对象、频繁访问数据库或文件的对象(比如数据源、session 工厂等)
最后
以上就是重要冥王星为你收集整理的单例设计模式的全部内容,希望文章能够帮你解决单例设计模式所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复