概述
首先导入各种TensorFlow等工具及设置画图的大小及字体
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (10.0, 8.0)
plt.rcParams['font.sans-serif'] = 'NSimSun,Times New Roman'
生成用于进行线性回归的模型的数据
# 随机生成100个点,围绕在y=3x+5的直线周围
num_points = 200
vectors_set = []
for i in range(num_points):
x1 = np.random.uniform(-10, 25)
y1 = x1 * 3 + 5 + np.random.normal(0.0, 5)
vectors_set.append([x1, y1])
# 生成一些样本
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set]
plt.scatter(x_data,y_data,c='r')
plt.show()
生成的数据及画出的点像图如下:
设置模型的原始数据,编写现行回归的训练模型代码,并使用梯度下降算法进行训练
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W')
b = tf.Variable(tf.zeros([1]), name='b')
y = W * x_data + b
loss = tf.reduce_mean(tf.square(y - y_data), name='loss')
optimizer = tf.train.GradientDescentOptimizer(0.005)
train = optimizer.minimize(loss, name='train')
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
# 初始化的W和b是多少
print ("W =", sess.run(W), "tb =", sess.run(b), "tloss =", sess.run(loss))
# 执行20次训练
for step in range(1000):
sess.run(train)
# 输出训练好的W和b
if(step % 50 == 0):
print ("W =", sess.run(W), "tb =", sess.run(b), "tloss =", sess.run(loss))
print ("最终的结果 W =", sess.run(W), "tb =", sess.run(b), "tloss =", sess.run(loss))
训练过程显示的参数结果如下:
W = [ 0.26262569] b = [ 0.] loss = 1366.89
W = [ 4.73117256] b = [ 0.23248257] loss = 386.389
W = [ 3.15473843] b = [ 1.66317821] loss = 32.05
W = [ 3.10857034] b = [ 2.7120173] loss = 27.6106
W = [ 3.07622719] b = [ 3.44677091] loss = 25.432
W = [ 3.05356979] b = [ 3.96149445] loss = 24.3628
W = [ 3.03769755] b = [ 4.32207775] loss = 23.8381
W = [ 3.02657843] b = [ 4.57468128] loss = 23.5806
W = [ 3.01878905] b = [ 4.7516408] loss = 23.4542
W = [ 3.01333213] b = [ 4.87560892] loss = 23.3922
W = [ 3.00950956] b = [ 4.96245146] loss = 23.3617
W = [ 3.00683141] b = [ 5.02328825] loss = 23.3468
W = [ 3.00495553] b = [ 5.06590843] loss = 23.3395
W = [ 3.00364113] b = [ 5.09576511] loss = 23.3359
W = [ 3.00272036] b = [ 5.11667919] loss = 23.3341
W = [ 3.00207567] b = [ 5.13133097] loss = 23.3332
W = [ 3.00162363] b = [ 5.14159679] loss = 23.3328
W = [ 3.00130725] b = [ 5.14878702] loss = 23.3326
W = [ 3.00108552] b = [ 5.15382385] loss = 23.3325
W = [ 3.00093007] b = [ 5.15735531] loss = 23.3324
W = [ 3.00082135] b = [ 5.1598258] loss = 23.3324
最终的结果 W = [ 3.00074625] b = [ 5.16152811] loss = 23.3324
plt.scatter(x_data,y_data,c='r')
plt.plot(x_data,sess.run(W)*x_data+sess.run(b))
plt.show()
最后
以上就是糊涂未来为你收集整理的使用TensorFlow实现简单的线性回归模型的全部内容,希望文章能够帮你解决使用TensorFlow实现简单的线性回归模型所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复