我是靠谱客的博主 聪明紫菜,最近开发中收集的这篇文章主要介绍线性判别分析算法(LDA),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1. 问题

     之前我们讨论的PCA、ICA也好,对样本数据来言,可以是没有类别标签y的。回想我们做回归时,如果特征太多,那么会产生不相关特征引入、过度拟合等问题。我们可以使用PCA来降维,但PCA没有将类别标签考虑进去,属于无监督的。

     比如回到上次提出的文档中含有“learn”和“study”的问题,使用PCA后,也许可以将这两个特征合并为一个,降了维度。但假设我们的类别标签y是判断这篇文章的topic是不是有关学习方面的。那么这两个特征对y几乎没什么影响,完全可以去除。

     再举一个例子,假设我们对一张100*100像素的图片做人脸识别,每个像素是一个特征,那么会有10000个特征,而对应的类别标签y仅仅是0/1值,1代表是人脸。这么多特征不仅训练复杂,而且不必要特征对结果会带来不可预知的影响,但我们想得到降维后的一些最佳特征(与y关系最密切的),怎么办呢?

2. 线性判别分析(二类情况)

     回顾我们之前的logistic回归方法,给定m个n维特征的训练样例clip_image002(i从1到m),每个clip_image004对应一个类标签clip_image006。我们就是要学习出参数clip_image008,使得clip_image010(g是sigmoid函数)。

     现在只考虑二值分类情况,也就是y=1或者y=0。

     为了方便表示,我们先换符号重新定义问题,给定特征为d维的N个样例,clip_image012,其中有clip_image014个样例属于类别clip_image016,另外clip_image018个样例属于类别clip_image020

     现在我们觉得原始特征数太多,想将d维特征降到只有一维,而又要保证类别能够“清晰”地反映在低维数据上,也就是这一维就能决定每个样例的类别。

     我们将这个最佳的向量称为w(d维),那么样例x(d维)到w上的投影可以用下式来计算

     clip_image022

     这里得到的y值不是0/1值,而是x投影到直线上的点到原点的距离。

     当x是二维的,我们就是要找一条直线(方向为w)来做投影,然后寻找最能使样本点分离的直线。如下图:

     clip_image024

     从直观上来看,右图比较好,可以很好地将不同类别的样本点分离。

     接下来我们从定量的角度来找到这个最佳的w。

     首先我们寻找每类样例的均值(中心点),这里i只有两个

     clip_image026

     由于x到w投影后的样本点均值为

     clip_image028

     由此可知,投影后的的均值也就是样本中心点的投影。

     什么是最佳的直线(w)呢?我们首先发现,能够使投影后的两类样本中心点尽量分离的直线是好的直线,定量表示就是:

     clip_image030

     J(w)越大越好。

     但是只考虑J(w)行不行呢?不行,看下图

     clip_image031

     样本点均匀分布在椭圆里,投影到横轴x1上时能够获得更大的中心点间距J(w),但是由于有重叠,x1不能分离样本点。投影到纵轴x2上,虽然J(w)较小,但是能够分离样本点。因此我们还需要考虑样本点之间的方差,方差越大,样本点越难以分离。

     我们使用另外一个度量值,称作散列值(scatter),对投影后的类求散列值,如下

     clip_image033

     从公式中可以看出,只是少除以样本数量的方差值,散列值的几何意义是样本点的密集程度,值越大,越分散,反之,越集中。

     而我们想要的投影后的样本点的样子是:不同类别的样本点越分开越好,同类的越聚集越好,也就是均值差越大越好,散列值越小越好。正好,我们可以使用J(w)和S来度量,最终的度量公式是

     clip_image035

     接下来的事就比较明显了,我们只需寻找使J(w)最大的w即可。

     先把散列值公式展开

     clip_image037

     我们定义上式中中间那部分

     clip_image039

     这个公式的样子不就是少除以样例数的协方差矩阵么,称为散列矩阵(scatter matrices)

     我们继续定义

     clip_image041

     clip_image043称为Within-class scatter matrix。

     那么回到上面clip_image045的公式,使用clip_image047替换中间部分,得

     clip_image049

     clip_image051

     然后,我们展开分子

     clip_image052

     clip_image054称为Between-class scatter,是两个向量的外积,虽然是个矩阵,但秩为1。

     那么J(w)最终可以表示为

     clip_image056

     在我们求导之前,需要对分母进行归一化,因为不做归一的话,w扩大任何倍,都成立,我们就无法确定w。因此我们打算令clip_image058,那么加入拉格朗日乘子后,求导

     clip_image059

     其中用到了矩阵微积分,求导时可以简单地把clip_image061当做clip_image063看待。

     如果clip_image043[1]可逆,那么将求导后的结果两边都乘以clip_image065,得

     clip_image066

     这个可喜的结果就是w就是矩阵clip_image068的特征向量了。

     这个公式称为Fisher linear discrimination。

     等等,让我们再观察一下,发现前面clip_image070的公式

     clip_image072

     那么

     clip_image074

     代入最后的特征值公式得

     clip_image076

     由于对w扩大缩小任何倍不影响结果,因此可以约去两边的未知常数clip_image078clip_image080,得到

     clip_image082

     至此,我们只需要求出原始样本的均值和方差就可以求出最佳的方向w,这就是Fisher于1936年提出的线性判别分析。

     看上面二维样本的投影结果图:

     clip_image083

3. 线性判别分析(多类情况)

     前面是针对只有两个类的情况,假设类别变成多个了,那么要怎么改变,才能保证投影后类别能够分离呢?

我们之前讨论的是如何将d维降到一维,现在类别多了,一维可能已经不能满足要求。假设我们有C个类别,需要K维向量(或者叫做基向量)来做投影。

     将这K维向量表示为clip_image085

     我们将样本点在这K维向量投影后结果表示为clip_image087,有以下公式成立

     clip_image089

     clip_image091

     为了像上节一样度量J(w),我们打算仍然从类间散列度和类内散列度来考虑。

     当样本是二维时,我们从几何意义上考虑:

     clip_image092

     其中clip_image094clip_image043[2]与上节的意义一样,clip_image096是类别1里的样本点相对于该类中心点clip_image098的散列程度。clip_image100变成类别1中心点相对于样本中心点clip_image102的协方差矩阵,即类1相对于clip_image102[1]的散列程度。

     clip_image043[3]

     clip_image104

     clip_image106的计算公式不变,仍然类似于类内部样本点的协方差矩阵

     clip_image108

     clip_image054[1]需要变,原来度量的是两个均值点的散列情况,现在度量的是每类均值点相对于样本中心的散列情况。类似于将clip_image094[1]看作样本点,clip_image102[2]是均值的协方差矩阵,如果某类里面的样本点较多,那么其权重稍大,权重用Ni/N表示,但由于J(w)对倍数不敏感,因此使用Ni。

     clip_image110

     其中

     clip_image112

     clip_image102[3]是所有样本的均值。

     上面讨论的都是在投影前的公式变化,但真正的J(w)的分子分母都是在投影后计算的。下面我们看样本点投影后的公式改变:

     这两个是第i类样本点在某基向量上投影后的均值计算公式。

     clip_image114

     clip_image116

     下面两个是在某基向量上投影后的clip_image043[4]clip_image070[1]

     clip_image118

     clip_image120

     其实就是将clip_image102[4]换成了clip_image122

     综合各个投影向量(w)上的clip_image124clip_image126,更新这两个参数,得到

     clip_image128

     clip_image130

     W是基向量矩阵,clip_image124[1]是投影后的各个类内部的散列矩阵之和,clip_image126[1]是投影后各个类中心相对于全样本中心投影的散列矩阵之和。

     回想我们上节的公式J(w),分子是两类中心距,分母是每个类自己的散列度。现在投影方向是多维了(好几条直线),分子需要做一些改变,我们不是求两两样本中心距之和(这个对描述类别间的分散程度没有用),而是求每类中心相对于全样本中心的散列度之和。

     然而,最后的J(w)的形式是

     clip_image132

     由于我们得到的分子分母都是散列矩阵,要将矩阵变成实数,需要取行列式。又因为行列式的值实际上是矩阵特征值的积,一个特征值可以表示在该特征向量上的发散程度。因此我们使用行列式来计算(此处我感觉有点牵强,道理不是那么有说服力)。

     整个问题又回归为求J(w)的最大值了,我们固定分母为1,然后求导,得出最后结果(我翻查了很多讲义和文章,没有找到求导的过程)

     clip_image134

     与上节得出的结论一样

     clip_image136

     最后还归结到了求矩阵的特征值上来了。首先求出clip_image138的特征值,然后取前K个特征向量组成W矩阵即可。

     注意:由于clip_image070[2]中的clip_image140 秩为1,因此clip_image070[3]的秩至多为C(矩阵的秩小于等于各个相加矩阵的秩的和)。由于知道了前C-1个clip_image094[2]后,最后一个clip_image142可以有前面的clip_image094[3]来线性表示,因此clip_image070[4]的秩至多为C-1。那么K最大为C-1,即特征向量最多有C-1个。特征值大的对应的特征向量分割性能最好。

     由于clip_image138[1]不一定是对称阵,因此得到的K个特征向量不一定正交,这也是与PCA不同的地方。

4. 实例

      将3维空间上的球体样本点投影到二维上,W1相比W2能够获得更好的分离效果。

      clip_image002

      PCA与LDA的降维对比:

      clip_image004

      PCA选择样本点投影具有最大方差的方向,LDA选择分类性能最好的方向。

      LDA既然叫做线性判别分析,应该具有一定的预测功能,比如新来一个样例x,如何确定其类别?

      拿二值分来来说,我们可以将其投影到直线上,得到y,然后看看y是否在超过某个阈值y0,超过是某一类,否则是另一类。而怎么寻找这个y0呢?

      看

      clip_image006

      根据中心极限定理,独立同分布的随机变量和符合高斯分布,然后利用极大似然估计求

      clip_image008

      然后用决策理论里的公式来寻找最佳的y0,详情请参阅PRML。

      这是一种可行但比较繁琐的选取方法,可以看第7节(一些问题)来得到简单的答案。

5. 使用LDA的一些限制

      1、 LDA至多可生成C-1维子空间

      LDA降维后的维度区间在[1,C-1],与原始特征数n无关,对于二值分类,最多投影到1维。

      2、 LDA不适合对非高斯分布样本进行降维。

      clip_image010

      上图中红色区域表示一类样本,蓝色区域表示另一类,由于是2类,所以最多投影到1维上。不管在直线上怎么投影,都难使红色点和蓝色点内部凝聚,类间分离。

      3、 LDA在样本分类信息依赖方差而不是均值时,效果不好。

      clip_image011

      上图中,样本点依靠方差信息进行分类,而不是均值信息。LDA不能够进行有效分类,因为LDA过度依靠均值信息。

      4、 LDA可能过度拟合数据。

6. LDA的一些变种

1、 非参数LDA

      非参数LDA使用本地信息和K临近样本点来计算clip_image013,使得clip_image013[1]是全秩的,这样我们可以抽取多余C-1个特征向量。而且投影后分离效果更好。

2、 正交LDA

      先找到最佳的特征向量,然后找与这个特征向量正交且最大化fisher条件的向量。这种方法也能摆脱C-1的限制。

3、 一般化LDA

      引入了贝叶斯风险等理论

4、 核函数LDA

      将特征clip_image015,使用核函数来计算。

7. 一些问题

      上面在多值分类中使用的

      clip_image017

      是带权重的各类样本中心到全样本中心的散列矩阵。如果C=2(也就是二值分类时)套用这个公式,不能够得出在二值分类中使用的clip_image013[2]

      clip_image019

      因此二值分类和多值分类时求得的clip_image013[3]会不同,而clip_image021意义是一致的。

      对于二值分类问题,令人惊奇的是最小二乘法和Fisher线性判别分析是一致的。

      下面我们证明这个结论,并且给出第4节提出的y0值得选取问题。

      回顾之前的线性回归,给定N个d维特征的训练样例clip_image023(i从1到N),每个clip_image025对应一个类标签clip_image027。我们之前令y=0表示一类,y=1表示另一类,现在我们为了证明最小二乘法和LDA的关系,我们需要做一些改变

      clip_image029

      就是将0/1做了值替换。

      我们列出最小二乘法公式

      clip_image031

      w和clip_image033是拟合权重参数。

      分别对clip_image033[1]和w求导得

      clip_image035

      clip_image037

      从第一个式子展开可以得到

      clip_image039

      消元后,得

      clip_image041

      clip_image043

      可以证明第二个式子展开后和下面的公式等价

      clip_image045

      其中clip_image047clip_image049与二值分类中的公式一样。

      由于clip_image051

      因此,最后结果仍然是

      clip_image053

      这个过程从几何意义上去理解也就是变形后的线性回归(将类标签重新定义),线性回归后的直线方向就是二值分类中LDA求得的直线方向w。

      好了,我们从改变后的y的定义可以看出y>0属于类clip_image055,y<0属于类clip_image057。因此我们可以选取y0=0,即如果clip_image059,就是类clip_image055[1],否则是类clip_image057[1]

      写了好多,挺杂的,还有个topic模型也叫做LDA,不过名字叫做Latent Dirichlet Allocation,第二作者就是Andrew Ng大牛,最后一个他导师Jordan泰斗了,什么时候拜读后再写篇总结发上来吧。


最后

以上就是聪明紫菜为你收集整理的线性判别分析算法(LDA)的全部内容,希望文章能够帮你解决线性判别分析算法(LDA)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(63)

评论列表共有 0 条评论

立即
投稿
返回
顶部