我是靠谱客的博主 靓丽老虎,最近开发中收集的这篇文章主要介绍18.10.22 POJ 1177 Picture(线段树+离散化+二分),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

描述

A number of rectangular posters, photographs and other pictures of the same shape are pasted on a wall. Their sides are all vertical or horizontal. Each rectangle can be partially or totally covered by the others. The length of the boundary of the union of all rectangles is called the perimeter.

Write a program to calculate the perimeter. An example with 7 rectangles is shown in Figure 1.


The corresponding boundary is the whole set of line segments drawn in Figure 2.


The vertices of all rectangles have integer coordinates.输入Your program is to read from standard input. The first line contains the number of rectangles pasted on the wall. In each of the subsequent lines, one can find the integer coordinates of the lower left vertex and the upper right vertex of each rectangle. The values of those coordinates are given as ordered pairs consisting of an x-coordinate followed by a y-coordinate.

0 <= number of rectangles < 5000
All coordinates are in the range [-10000,10000] and any existing rectangle has a positive area.输出Your program is to write to standard output. The output must contain a single line with a non-negative integer which corresponds to the perimeter for the input rectangles.样例输入

7
-15 0 5 10
-5 8 20 25
15 -4 24 14
0 -6 16 4
2 15 10 22
30 10 36 20
34 0 40 16

样例输出

228

来源

IOI 1998


1 #include <iostream>

2 #include <string.h>

3 #include <algorithm>

4 #include <stack>

5 #include <string>

6 #include <math.h>

7 #include <queue>

8 #include <stdio.h>

9 #include <string.h>
 10 #include <vector>
 11 #include <fstream>
 12 #include <set>
 13 #include<map>
 14 #define l(rt) rt*2
 15 #define r(rt) rt*2+1
 16 #define mid(l,r) (l+r)/2
 17
 18 using namespace std;
 19
 20 const int maxn = 5005;
 21 struct node {
 22
int l, r;
 23
int len;//本区间有多长被矩形覆盖
 24
int block;
 25
bool cl, cr;
 26
int cover;
 27 }tree[maxn*8];
 28 struct cline {
 29
int x, y1, y2;
 30
bool left;
 31
bool operator <(cline a) {
 32
if (x == a.x)
 33
return left > a.left;
 34
return x < a.x;
 35 
}
 36 }line[maxn*2];
 37 int n,col[maxn*2];
 38
 39 void build(int rt, int l, int r) {
 40
tree[rt].l = l, tree[rt].r = r;
 41
tree[rt].cover = 0,tree[rt].len=0;
 42
tree[rt].block = 0, tree[rt].cl = tree[rt].cr = false;
 43
if (l == r)return;
 44
build(r(rt), mid(l, r) + 1, r);
 45 
build(l(rt), l, mid(l, r));
 46 }
 47
 48 void insert(int rt, int l, int r) {
 49
if (tree[rt].l == l && tree[rt].r == r) {
 50
tree[rt].cover++;
 51
tree[rt].len = col[r + 1] - col[l];
 52
tree[rt].block = 1, tree[rt].cl = tree[rt].cr = true;
 53
return;
 54 
}
 55
int midn = mid(tree[rt].l, tree[rt].r);
 56
if (l > midn)
 57 
insert(r(rt), l, r);
 58
else if (r <= midn)
 59 
insert(l(rt), l, r);
 60
else {
 61 
insert(l(rt), l, midn);
 62
insert(r(rt), midn + 1, r);
 63 
}
 64
if (tree[rt].cover == 0)
 65 
{
 66
tree[rt].len = tree[l(rt)].len + tree[r(rt)].len;
 67
tree[rt].cl = tree[l(rt)].cl;
 68
tree[rt].cr = tree[r(rt)].cr;
 69
tree[rt].block = tree[l(rt)].block + tree[r(rt)].block - tree[l(rt)].cr*tree[r(rt)].cl;
 70 
}
 71
return;
 72 }
 73
 74 void Delete(int rt, int l, int r) {
 75
if (tree[rt].l == l && tree[rt].r == r) {
 76
tree[rt].cover--;
 77
if (tree[rt].cover == 0) {
 78
if (l == r)
 79 
{
 80
tree[rt].len = 0;
 81
tree[rt].block = 0;
 82
tree[rt].cl = tree[rt].cr = false;
 83 
}
 84
else
 85 
{
 86
tree[rt].len = tree[l(rt)].len + tree[r(rt)].len;
 87
tree[rt].cl = tree[l(rt)].cl;
 88
tree[rt].cr = tree[r(rt)].cr;
 89
tree[rt].block = tree[l(rt)].block + tree[r(rt)].block - tree[l(rt)].cr*tree[r(rt)].cl;
 90 
}
 91 
}
 92
return;
 93 
}
 94
int midn = mid(tree[rt].l, tree[rt].r);
 95
if (l > midn)
 96 
Delete(r(rt), l, r);
 97
else if (r <= midn)
 98 
Delete(l(rt), l, r);
 99
else
100
Delete(l(rt), l, midn), Delete(r(rt), midn + 1, r);
101
if (tree[rt].cover == 0)
102 
{
103
tree[rt].len = tree[l(rt)].len + tree[r(rt)].len;
104
tree[rt].cl = tree[l(rt)].cl;
105
tree[rt].cr = tree[r(rt)].cr;
106
tree[rt].block = tree[l(rt)].block + tree[r(rt)].block - tree[l(rt)].cr*tree[r(rt)].cl;
107 
}
108
return;
109 }
110
111 int binary_find(int s, int e, int val) {
112
while (s < e) {
113
int x = s + (e - s) / 2;
114
if (col[x] >= val)e = x;
115
else s = x + 1;
116 
}
117
return s;
118 }
119
120 void init() {
121
scanf("%d", &n);
122
int yc, lc;
123
yc=lc = 0;
124
for (int i = 1; i <= n; i++) {
125
int x1, x2, y1, y2;
126
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
127
col[++yc] = y1, col[++yc] = y2;;
128
line[++lc].x = x1, line[lc].y1 = y1, line[lc].y2 = y2, line[lc].left = true;
129
line[++lc].x = x2, line[lc].y1 = y1, line[lc].y2 = y2, line[lc].left = false;
130 
}
131
sort(col + 1, col + yc+1);
132
yc = unique(col + 1, col + yc + 1) - col - 1;//横线yc条
133
sort(line + 1, line + 1 + lc);
134
build(1, 1, yc - 1);
135
int prec = 0,nowc,ans=0;
136
for (int i = 1; i <= lc; i++) {
137
int l = binary_find(1, yc+1, line[i].y1);
138
int r = binary_find(1, yc+1, line[i].y2)-1;
139
if (line[i].left)insert(1, l, r);
140
else Delete(1, l, r);
141
nowc=tree[1].len;
142
ans += abs(nowc - prec);
143
if(i!=lc)
144
ans+=(tree[1].block * 2 * (line[i + 1].x - line[i].x));
145
prec = nowc;
146 
}
147
printf("%dn", ans);
148 }
149
150 int main()
151 {
152 
init();
153
return 0;
154 }
View Code

我居然以为这道题就是atlantis……

所以我是根据面积并的代码改的周长并……所以体积庞大并且乱七八糟

很迷的是,一开始我提交OpenJudge结果WA了……试着提交POJ却是AC……过了好久我实在改不出啥,几乎没动程序又交了一遍……AC了……

这道题真是折煞我了|||不仅看错题还经历了这种灵异现象

思路:

和atlantis一脉相承

不同在于结构中要加几个元素(为了算横线的长)

还有就是周长的算法变为了:竖线长度和每次需要加上的值是现在 tree[1].len 的值减去上次扫描时同名元素的值(也就是新出现的裸露的线段的值)

转载于:https://www.cnblogs.com/yalphait/p/9832490.html

最后

以上就是靓丽老虎为你收集整理的18.10.22 POJ 1177 Picture(线段树+离散化+二分)的全部内容,希望文章能够帮你解决18.10.22 POJ 1177 Picture(线段树+离散化+二分)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(38)

评论列表共有 0 条评论

立即
投稿
返回
顶部