我是靠谱客的博主 开朗樱桃,最近开发中收集的这篇文章主要介绍简析JAVA8(二)之stream与Lambda,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

记住了,Stream和InputStream、OutputStream的唯一的关系就是没有半毛钱关系!

你可以简单粗暴的理解为是一种更高级的集合迭代器,它让集合操作更方便、更快捷,逻辑代码可读性更高。简单一句话就是会让你的代码显得更niubility。

而Lambda则是和Stream狼狈为奸,不对,琴瑟和鸣。二者结合使用,会让你的代码显得very niubility。

不信我们先来比较一下:

Java7的排序:

List<Transaction> groceryTransactions = new Arraylist<>();
for(Transaction t: transactions){
if(t.getType() == Transaction.GROCERY){
groceryTransactions.add(t);
}
}
Collections.sort(groceryTransactions, new Comparator(){
public int compare(Transaction t1, Transaction t2){
return t2.getValue().compareTo(t1.getValue());
}
});
List<Integer> transactionIds = new ArrayList<>();
for(Transaction t: groceryTransactions){
transactionsIds.add(t.getId());
}

Java8的排序:

List<Integer> transactionsIds = transactions.parallelStream().
filter(t -> t.getType() == Transaction.GROCERY).
sorted(comparing(Transaction::getValue).reversed()).
map(Transaction::getId).
collect(toList());

怎么样,是不是觉得这几行代码至少比上面的贵五毛?

如果Stream的价值只值这五毛钱的话,那么它完全没有必要被创造出来,但他还有更强大的功能,比如:并行处理等,容我后面慢慢说。我们先讲几句不得不讲的题外话:

-----------题外话分割线-------------

~~流的操作类型分为两种:

第一种叫Intermediate:翻译过来叫中间件。一个流可以后面跟随零个或多个 intermediate 操作。其目的主要是打开流,做出某种程度的数据映射/过滤,然后返回一个新的流,交给下一个操作使用。这类操作都是惰性化的(lazy),就是说,仅仅调用到这类方法,并没有真正开始流的遍历。例如:map (mapToInt, flatMap 等)、 filter、 distinct、 sorted、 peek、 limit、 skip、 parallel、 sequential、 unordered。
第二种叫Terminal:翻译过来叫最终态。一个流只能有一个 terminal 操作,当这个操作执行后,流就被使用“光”了,无法再被操作。所以这必定是流的最后一个操作。Terminal 操作的执行,才会真正开始流的遍历,并且会生成一个结果,或者一个 side effect。例如:forEach、 forEachOrdered、 toArray、 reduce、 collect、 min、 max、 count、 anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 iterator。
在对于一个 Stream 进行多次转换操作 (Intermediate 操作),每次都对 Stream 的每个元素进行转换,而且是执行多次,这样时间复杂度就是 N(转换次数)个 for 循环里把所有操作都做掉的总和吗?其实不是这样的,转换操作都是 lazy 的,多个转换操作只会在 Terminal 操作的时候融合起来,一次循环完成。我们可以这样简单的理解,Stream 里有个操作函数的集合,每次转换操作就是把转换函数放入这个集合中,在 Terminal 操作的时候循环 Stream 对应的集合,然后对每个元素执行所有的函数。

还有一种操作被称为 short-circuiting。用以指:

对于一个 intermediate 操作,如果它接受的是一个无限大(infinite/unbounded)的 Stream,但返回一个有限的新 Stream。
对于一个 terminal 操作,如果它接受的是一个无限大的 Stream,但能在有限的时间计算出结果。

例如:anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 limit


当操作一个无限大的 Stream,而又希望在有限时间内完成操作,则在管道内拥有一个 short-circuiting 操作是必要非充分条件。

我们来看一个流操作的示例
int sum = widgets.stream().filter(w -> w.getColor() == RED) .mapToInt(w -> w.getWeight()) .sum();
stream() 获取当前小物件的 source,filter 和 mapToInt 为 intermediate 操作,进行数据筛选和转换,最后一个 sum() 为 terminal 操作,对符合条件的全部小物件作重量求和。

-----------题外话分割线-------------

好,概念说完,书接上一段,我们这一章还是先把这五毛钱老老实实的说完吧。具体罗列一些使用实例,以方便理解记忆:

1、流的构造

// 1. Individual values
Stream stream = Stream.of("a", "b", "c");
// 2. Arrays
String [] strArray = new String[] {"a", "b", "c"};
stream = Stream.of(strArray);
stream = Arrays.stream(strArray);
// 3. Collections
List<String> list = Arrays.asList(strArray);
stream = list.stream();
--------------
//数值流的构造
IntStream.of(new int[]{1, 2, 3}).forEach(System.out::println);
IntStream.range(1, 3).forEach(System.out::println);
IntStream.rangeClosed(1, 3).forEach(System.out::println);
--------------
针对基本类型专门创造的流:Stream<Integer>、Stream<Long> >、Stream<Double>此处不赘述

2, 遍历list集合

  List<Integer> list = new ArrayList<>();
  list.add(1);
  list.add(2);
  list.add(3);
  // 直接打印
  list.forEach(System.out::println);
  // 取值分别操作
  list.forEach(i -> {
    System.out.println(i * 3);
  });
-----------------
//此处摘抄自某论坛:forEach:Java8与之前版本的写法对比
// Java 8
roster.stream()
.filter(p -> p.getGender() == Person.Sex.MALE)
.forEach(p -> System.out.println(p.getName()));
// Pre-Java 8
for (Person p : roster) {
if (p.getGender() == Person.Sex.MALE) {
System.out.println(p.getName());
}
}

需要注意的是forEach:【划重点】

forEach 是 terminal 操作,因此它执行后,Stream 的元素就被“消费”掉了,你无法对一个 Stream 进行两次 terminal 运算。下面的代码是错误的:

stream.forEach(element -> doOneThing(element));
stream.forEach(element -> doAnotherThing(element));

3、map/flatMap

转换大写

List<String> output = wordList.stream().
map(String::toUpperCase).
collect(Collectors.toList());

平方数

List<Integer> nums = Arrays.asList(1, 2, 3, 4);
List<Integer> squareNums = nums.stream().
map(n -> n * n).
collect(Collectors.toList());

一对多

Stream<List<Integer>> inputStream = Stream.of(
Arrays.asList(1),
Arrays.asList(2, 3),
Arrays.asList(4, 5, 6)
);
Stream<Integer> outputStream = inputStream.
flatMap((childList) -> childList.stream());

4、filter:顾名思义,按照条件过滤数据,对原始 Stream 进行某项测试,通过测试的元素被留下来生成一个新 Stream

留下偶数

Integer[] sixNums = {1, 2, 3, 4, 5, 6};
Integer[] evens =
Stream.of(sixNums).filter(n -> n%2 == 0).toArray(Integer[]::new);

把单词挑出来

List<String> output = reader.lines().
flatMap(line -> Stream.of(line.split(REGEXP))).
filter(word -> word.length() > 0).
collect(Collectors.toList());

5、peek【与forEach相似】:对每个元素执行操作并返回一个新的 Stream

Stream.of("one", "two", "three", "four")
.filter(e -> e.length() > 3)
.peek(e -> System.out.println("Filtered value: " + e))
.map(String::toUpperCase)
.peek(e -> System.out.println("Mapped value: " + e))
.collect(Collectors.toList());

6、findFirst:返回 Stream 的第一个元素,或者空

String strA = " abcd ", strB = null;
print(strA);
print("");
print(strB);
getLength(strA);
getLength("");
getLength(strB);
public static void print(String text) {
// Java 8
Optional.ofNullable(text).ifPresent(System.out::println);
// Pre-Java 8
if (text != null) {
System.out.println(text);
}
}
public static int getLength(String text) {
// Java 8
return Optional.ofNullable(text).map(String::length).orElse(-1);
// Pre-Java 8
// return if (text != null) ? text.length() : -1;
};

这里要多说一句,代码中提及到了我们上一章着重介绍过的非空神器【Optional】:

使用 Optional 代码的可读性更好,而且它提供的是编译时检查,能极大的降低 NPE 这种 Runtime Exception 对程序的影响,或者迫使程序员更早的在编码阶段处理空值问题,而不是留到运行时再发现和调试。

Stream 中的 findAny、max/min、reduce 等方法等返回 Optional 值。还有例如 IntStream.average() 返回 OptionalDouble 等等。

7、reduce,这个方法我目前还没有用到,主要是项目进度紧,及时有用到的情景,也习惯性的想不起来。。。

主要作用是把 Stream 元素组合起来。它提供一个起始值(种子),然后依照运算规则(BinaryOperator),和前面 Stream 的第一个、第二个、第 n 个元素组合。
从这个意义上说,字符串拼接、数值的 sum、min、max、average 都是特殊的 reduce。例如 Stream 的 sum 就相当于

Integer sum = integers.reduce(0, (a, b) -> a+b); 或  Integer sum = integers.reduce(0, Integer::sum);

也有没有起始值的情况,这时会把 Stream 的前面两个元素组合起来,返回的是 Optional。

// 字符串连接,concat = "ABCD"
String concat = Stream.of("A", "B", "C", "D").reduce("", String::concat);
// 求最小值,minValue = -3.0
double minValue = Stream.of(-1.5, 1.0, -3.0, -2.0).reduce(Double.MAX_VALUE, Double::min);
// 求和,sumValue = 10, 有起始值
int sumValue = Stream.of(1, 2, 3, 4).reduce(0, Integer::sum);
// 求和,sumValue = 10, 无起始值
sumValue = Stream.of(1, 2, 3, 4).reduce(Integer::sum).get();
// 过滤,字符串连接,concat = "ace"
concat = Stream.of("a", "B", "c", "D", "e", "F").
filter(x -> x.compareTo("Z") > 0).
reduce("", String::concat);
/**
例如第一个示例的 reduce(),第一个参数(空白字符)即为起始值,第二个参数(String::concat)为 BinaryOperator。这类有起始值的 reduce() 都返回具体的对象。而对于第四个示例没有起始值的 reduce(),由于可能没有足够的元素,返回的是 Optional,请留意这个区别。
*/

8、limit/skip:limit 返回 Stream 的前面 n 个元素;skip 则是扔掉前 n 个元素(它是由一个叫 subStream 的方法改名而来)。

public void testLimitAndSkip() {
List<Person> persons = new ArrayList();
for (int i = 1; i <= 10000; i++) {
Person person = new Person(i, "name" + i);
persons.add(person);
}
List<String> personList2 = persons.stream().
map(Person::getName).limit(10).skip(3).collect(Collectors.toList());
System.out.println(personList2);
}
private class Person {
public int no;
private String name;
public Person (int no, String name) {
this.no = no;
this.name = name;
}
public String getName() {
System.out.println(name);
return name;
}
}
输出结果为:
name1
name2
name3
name4
name5
name6
name7
name8
name9
name10
[name4, name5, name6, name7, name8, name9, name10]
/**
这是一个有 10,000 个元素的 Stream,但在 short-circuiting 操作 limit 和 skip 的作用下,管道中 map 操作指定的 getName() 方法的执行次数为 limit 所限定的 10 次,而最终返回结果在跳过前 3 个元素后只有后面 7 个返回。
*/

PS:有一种情况是 limit/skip无法达到short-circuiting目的的,就是把它们放在 Stream 的排序操作后,原因跟 sorted 这个 intermediate 操作有关:此时系统并不知道 Stream 排序后的次序如何,所以 sorted 中的操作看上去就像完全没有被 limit 或者 skip 一样。

//limit 和 skip 对 sorted 后的运行次数无影响
List<Person> persons = new ArrayList();
for (int i = 1; i <= 5; i++) {
Person person = new Person(i, "name" + i);
persons.add(person);
}
List<Person> personList2 = persons.stream().sorted((p1, p2) ->
p1.getName().compareTo(p2.getName())).limit(2).collect(Collectors.toList());
System.out.println(personList2);
//先对 5 个元素的 Stream 排序,然后进行 limit 操作。输出结果为:
name2
name1
name3
name2
name4
name3
name5
name4
[stream.StreamDW$Person@816f27d, stream.StreamDW$Person@87aac27]

最后有一点需要注意的是,对一个 parallel 的 Steam 管道来说,如果其元素是有序的,那么 limit 操作的成本会比较大,因为它的返回对象必须是前 n 个也有一样次序的元素。取而代之的策略是取消元素间的次序,或者不要用 parallel Stream。
9、sorted:对 Stream 进行排序,比数组的排序更强之处在于你可以首先对 Stream 进行各类 map、filter、limit、skip 甚至 distinct 来减少元素数量后,再排序,这能帮助程序明显缩短执行时间:

List<Person> persons = new ArrayList();
for (int i = 1; i <= 5; i++) {
Person person = new Person(i, "name" + i);
persons.add(person);
}
List<Person> personList2 = persons.stream().limit(2).sorted((p1, p2) -> p1.getName().compareTo(p2.getName())).collect(Collectors.toList());
System.out.println(personList2);
结果会简单很多:
name2
name1
[stream.StreamDW$Person@6ce253f1, stream.StreamDW$Person@53d8d10a]

10、min/max/distinct

BufferedReader br = new BufferedReader(new FileReader("c:\SUService.log"));
int longest = br.lines().
mapToInt(String::length).
max().
getAsInt();
br.close();
System.out.println(longest);
-------------------
List<String> words = br.lines().
flatMap(line -> Stream.of(line.split(" "))).
filter(word -> word.length() > 0).
map(String::toLowerCase).
distinct().
sorted().
collect(Collectors.toList());
br.close();
System.out.println(words);

11、Match

List<Person> persons = new ArrayList();
persons.add(new Person(1, "name" + 1, 10));
persons.add(new Person(2, "name" + 2, 21));
persons.add(new Person(3, "name" + 3, 34));
persons.add(new Person(4, "name" + 4, 6));
persons.add(new Person(5, "name" + 5, 55));
boolean isAllAdult = persons.stream().
allMatch(p -> p.getAge() > 18);
System.out.println("All are adult? " + isAllAdult);
boolean isThereAnyChild = persons.stream().
anyMatch(p -> p.getAge() < 12);
System.out.println("Any child? " + isThereAnyChild);
输出结果:
All are adult? false
Any child? true
/**
allMatch:Stream 中全部元素符合传入的 predicate,返回 true
anyMatch:Stream 中只要有一个元素符合传入的 predicate,返回 true
noneMatch:Stream 中没有一个元素符合传入的 predicate,返回 true
它们都不是要遍历全部元素才能返回结果。例如 allMatch 只要一个元素不满足条件,就 skip 剩下的所有元素,返回 false
*/

12、groupingBy/partitioningBy

Map<Integer, List<Person>> personGroups = Stream.generate(new PersonSupplier()).
limit(100).
collect(Collectors.groupingBy(Person::getAge));
Iterator it = personGroups.entrySet().iterator();
while (it.hasNext()) {
Map.Entry<Integer, List<Person>> persons = (Map.Entry) it.next();
System.out.println("Age " + persons.getKey() + " = " + persons.getValue().size());
}
//上面的 code,首先生成 100 人的信息,然后按照年龄归组,相同年龄的人放到同一个 list 中,可以看到如下的输出:
Age 0 = 2
Age 1 = 2
Age 5 = 2
Age 8 = 1
Age 9 = 1
Age 11 = 2
……

划重点:【Stream.generate时管道必须有 limit 这样的操作来限制 Stream 大小】

//按照未成年人和成年人归组
Map<Boolean, List<Person>> children = Stream.generate(new PersonSupplier()).
limit(100).
collect(Collectors.partitioningBy(p -> p.getAge() < 18));
System.out.println("Children number: " + children.get(true).size());
System.out.println("Adult number: " + children.get(false).size());
//输出结果:
Children number: 23
Adult number: 77

 

最后

以上就是开朗樱桃为你收集整理的简析JAVA8(二)之stream与Lambda的全部内容,希望文章能够帮你解决简析JAVA8(二)之stream与Lambda所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(39)

评论列表共有 0 条评论

立即
投稿
返回
顶部