我是靠谱客的博主 土豪花瓣,最近开发中收集的这篇文章主要介绍Spark MLlib TF-IDF算法原理及调用实例(Scala/Java/python),觉得挺不错的,现在分享给大家,希望可以做个参考。
概述
算法介绍:
词频-逆向文件频率(TF-IDF)是一种在文本挖掘中广泛使用的特征向量化方法,它可以体现一个文档中词语在语料库中的重要程度。
词语由t表示,文档由d表示,语料库由D表示。词频TF(t,,d)是词语t在文档d中出现的次数。文件频率DF(t,D)是包含词语的文档的个数。如果我们只使用词频来衡量重要性,很容易过度强调在文档中经常出现而并没有包含太多与文档有关的信息的词语,比如“a”,“the”以及“of”。如果一个词语经常出现在语料库中,它意味着它并没有携带特定的文档的特殊信息。逆向文档频率数值化衡量词语提供多少信息:
其中,|D|是语料库中的文档总数。由于采用了对数,如果一个词出现在所有的文件,其IDF值变为0。
在下面的代码段中,我们以一组句子开始。首先使用分解器Tokenizer把句子划分为单个词语。对每一个句子(词袋),我们使用HashingTF将句子转换为特征向量,最后使用IDF重新调整特征向量。这种转换通常可以提高使用文本特征的性能。然后,我们的特征向量可以在算法学习中使用。
Scala:
Java:import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer} val sentenceData = spark.createDataFrame(Seq( (0, "Hi I heard about Spark"), (0, "I wish Java could use case classes"), (1, "Logistic regression models are neat") )).toDF("label", "sentence") val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words") val wordsData = tokenizer.transform(sentenceData) val hashingTF = new HashingTF() .setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20) val featurizedData = hashingTF.transform(wordsData) // CountVectorizer也可获取词频向量 val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features") val idfModel = idf.fit(featurizedData) val rescaledData = idfModel.transform(featurizedData) rescaledData.select("features", "label").take(3).foreach(println)
Python:import java.util.Arrays; import java.util.List; import org.apache.spark.ml.feature.HashingTF; import org.apache.spark.ml.feature.IDF; import org.apache.spark.ml.feature.IDFModel; import org.apache.spark.ml.feature.Tokenizer; import org.apache.spark.ml.linalg.Vector; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.SparkSession; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.Metadata; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType; List<Row> data = Arrays.asList( RowFactory.create(0.0, "Hi I heard about Spark"), RowFactory.create(0.0, "I wish Java could use case classes"), RowFactory.create(1.0, "Logistic regression models are neat") ); StructType schema = new StructType(new StructField[]{ new StructField("label", DataTypes.DoubleType, false, Metadata.empty()), new StructField("sentence", DataTypes.StringType, false, Metadata.empty()) }); Dataset<Row> sentenceData = spark.createDataFrame(data, schema); Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words"); Dataset<Row> wordsData = tokenizer.transform(sentenceData); int numFeatures = 20; HashingTF hashingTF = new HashingTF() .setInputCol("words") .setOutputCol("rawFeatures") .setNumFeatures(numFeatures); Dataset<Row> featurizedData = hashingTF.transform(wordsData); // CountVectorizer也可获取词频向量 IDF idf = new IDF().setInputCol("rawFeatures").setOutputCol("features"); IDFModel idfModel = idf.fit(featurizedData); Dataset<Row> rescaledData = idfModel.transform(featurizedData); for (Row r : rescaledData.select("features", "label").takeAsList(3)) { Vector features = r.getAs(0); Double label = r.getDouble(1); System.out.println(features); System.out.println(label); }
from pyspark.ml.feature import HashingTF, IDF, Tokenizer sentenceData = spark.createDataFrame([ (0, "Hi I heard about Spark"), (0, "I wish Java could use case classes"), (1, "Logistic regression models are neat") ], ["label", "sentence"]) tokenizer = Tokenizer(inputCol="sentence", outputCol="words") wordsData = tokenizer.transform(sentenceData) hashingTF = HashingTF(inputCol="words", outputCol="rawFeatures", numFeatures=20) featurizedData = hashingTF.transform(wordsData) # CountVectorizer也可获取词频向量 idf = IDF(inputCol="rawFeatures", outputCol="features") idfModel = idf.fit(featurizedData) rescaledData = idfModel.transform(featurizedData) for features_label in rescaledData.select("features", "label").take(3): print(features_label)
最后
以上就是土豪花瓣为你收集整理的Spark MLlib TF-IDF算法原理及调用实例(Scala/Java/python)的全部内容,希望文章能够帮你解决Spark MLlib TF-IDF算法原理及调用实例(Scala/Java/python)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复