概述
本篇博客,博主为大家介绍的是Spark的数据读取与保存。
文章目录
- 数据读取与保存
- 1. 文件类数据读取与保存
- 1.1 Text文件
- 1.2 Json文件
- 1.3 Sequence文件
- 1.4 对象文件
- 2. 文件系统类数据读取与保存
- 2.1 HDFS
- 2.2MySQL数据库连接
- 2.3 HBase 数据库
数据读取与保存
Spark的数据读取及数据保存可以从两个维度来作区分:文件格式以及文件系统。文件格式分为:Text文件、Json文件、Csv文件、Sequence文件以及Object文件;文件系统分为:本地文件系统、HDFS、HBASE以及数据库。
1. 文件类数据读取与保存
1.1 Text文件
1)数据读取:textFile(String)
scala> val hdfsFile = sc.textFile("hdfs://hadoop102:9000/fruit.txt")
hdfsFile: org.apache.spark.rdd.RDD[String] = hdfs://hadoop102:9000/fruit.txt MapPartitionsRDD[21] at textFile at <console>:24
2)数据保存: saveAsTextFile(String)
scala> hdfsFile.saveAsTextFile("/fruitOut")
1.2 Json文件
如果JSON文件中每一行就是一个JSON记录,那么可以通过将JSON文件当做文本文件来读取,然后利用相关的JSON库对每一条数据进行JSON解析。
注意:使用RDD读取JSON文件处理很复杂,同时SparkSQL集成了很好的处理JSON文件的方式,所以应用中多是采用SparkSQL处理JSON文件。
1)导入解析json所需的包
scala> import scala.util.parsing.json.JSON
2)上传json文件到HDFS
[atguigu@hadoop102 spark]$ hadoop fs -put ./examples/src/main/resources/people.json /
3)读取文件
scala> val json = sc.textFile("/people.json")
json: org.apache.spark.rdd.RDD[String] = /people.json MapPartitionsRDD[8] at textFile at <console>:24
4)解析json数据
scala> val result = json.map(JSON.parseFull)
result: org.apache.spark.rdd.RDD[Option[Any]] = MapPartitionsRDD[10] at map at <console>:27
5)打印
scala> result.collect
res11: Array[Option[Any]] = Array(Some(Map(name -> Michael)), Some(Map(name -> Andy, age -> 30.0)), Some(Map(name -> Justin, age -> 19.0)))
1.3 Sequence文件
SequenceFile文件是Hadoop用来存储二进制形式的key-value对而设计的一种平面文件(Flat File)。Spark 有专门用来读取 SequenceFile 的接口。在 SparkContext 中,可以调用 sequenceFile[ keyClass, valueClass](path)。
注意:SequenceFile文件只针对PairRDD
1)创建一个RDD
scala> val rdd = sc.parallelize(Array((1,2),(3,4),(5,6)))
rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[13] at parallelize at <console>:24
2)将RDD保存为Sequence文件
scala> rdd.saveAsSequenceFile("file:///opt/module/spark/seqFile")
3)查看该文件
[atguigu@hadoop102 seqFile]$ pwd
/opt/module/spark/seqFile
[atguigu@hadoop102 seqFile]$ ll
总用量 8
-rw-r--r-- 1 atguigu atguigu 108 10月 9 10:29 part-00000
-rw-r--r-- 1 atguigu atguigu 124 10月 9 10:29 part-00001
-rw-r--r-- 1 atguigu atguigu 0 10月 9 10:29 _SUCCESS
[atguigu@hadoop102 seqFile]$ cat part-00000
4)读取Sequence文件
scala> val seq = sc.sequenceFile[Int,Int]("file:///opt/module/spark/seqFile")
seq: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[18] at sequenceFile at <console>:24
5)打印读取后的Sequence文件
scala> seq.collect
res14: Array[(Int, Int)] = Array((1,2), (3,4), (5,6))
1.4 对象文件
对象文件是将对象序列化后保存的文件,采用Java的序列化机制。可以通过objectFile[k,v](path) 函数接收一个路径,读取对象文件,返回对应的 RDD,也可以通过调用saveAsObjectFile() 实现对对象文件的输出。因为是序列化所以要指定类型。
1)创建一个RDD
scala> val rdd = sc.parallelize(Array(1,2,3,4))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[19] at parallelize at <console>:24
2)将RDD保存为Object文件
scala> rdd.saveAsObjectFile("file:///opt/module/spark/objectFile")
3)查看该文件
[atguigu@hadoop102 objectFile]$ pwd
/opt/module/spark/objectFile
[atguigu@hadoop102 objectFile]$ ll
总用量 8
-rw-r--r-- 1 atguigu atguigu 142 10月 9 10:37 part-00000
-rw-r--r-- 1 atguigu atguigu 142 10月 9 10:37 part-00001
-rw-r--r-- 1 atguigu atguigu 0 10月 9 10:37 _SUCCESS
[atguigu@hadoop102 objectFile]$ cat part-00000
SEQ!org.apache.hadoop.io.NullWritable"org.apache.hadoop.io.BytesWritableW@`l
4)读取Object文件
scala> val objFile = sc.objectFile[Int]("file:///opt/module/spark/objectFile")
objFile: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[31] at objectFile at <console>:24
5)打印读取后的Sequence文件
scala> objFile.collect
res19: Array[Int] = Array(1, 2, 3, 4)
2. 文件系统类数据读取与保存
2.1 HDFS
Spark的整个生态系统与Hadoop是完全兼容的,所以对于Hadoop所支持的文件类型或者数据库类型,Spark也同样支持.另外,由于Hadoop的API有新旧两个版本,所以Spark为了能够兼容Hadoop所有的版本,也提供了两套创建操作接口。对于外部存储创建操作而言,hadoopRDD和newHadoopRDD是最为抽象的两个函数接口,主要包含以下四个参数。
1)输入格式(InputFormat): 制定数据输入的类型,如TextInputFormat等,新旧两个版本所引用的版本分别是org.apache.hadoop.mapred.InputFormat
和org.apache.hadoop.mapreduce.InputFormat(NewInputFormat)
2)键类型: 指定[K,V]键值对中K的类型
3)值类型: 指定[K,V]键值对中V的类型
4)分区值: 指定由外部存储生成的RDD的partition数量的最小值,如果没有指定,系统会使用默认值defaultMinSplits。
注意:其他创建操作的API接口都是为了方便最终的Spark程序开发者而设置的,是这两个接口的高效实现版本.例如,对于textFile而言,只有path这个指定文件路径的参数,其他参数在系统内部指定了默认值。
1.在Hadoop中以压缩形式存储的数据,不需要指定解压方式就能够进行读取,因为Hadoop本身有一个解压器会根据压缩文件的后缀推断解压算法进行解压。
2.如果用Spark从Hadoop中读取某种类型的数据不知道怎么读取的时候,上网查找一个使用map-reduce的时候是怎么读取这种这种数据的,然后再将对应的读取方式改写成上面的hadoopRDD和newAPIHadoopRDD两个类就行了
2.2MySQL数据库连接
支持通过Java JDBC访问关系型数据库。需要通过JdbcRDD进行,示例如下:
(1)添加依赖
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.27</version>
</dependency>
(2)Mysql读取
object Spark_MySQL {
def main(args: Array[String]): Unit = {
// 1.创建spark配置信息
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("JsonText")
// 2.创建Spark上下文对象
val sc = new SparkContext(conf)
//3.定义连接mysql的参数
val driver = "com.mysql.jdbc.Driver"
val url = "jdbc:mysql://node01:3306/rdd"
val userName = "root"
val passWd = "123456"
// sql
val sql = "select * from user where id >= ? and id <= ?"
// 创建JdbcRDD,访问我们的数据库
val jdbcRDD = new JdbcRDD(
sc, // 上下文执行对象
()=>{
// 获取数据库连接对象
Class.forName(driver)
DriverManager.getConnection(url, userName, passWd)
},
sql, // sql语句
1, // 下限
3, //上限
2, // 分区数
// 对结果做一个处理,getString(2)代表获取第二个字段,以此类推
rs=>{
println(rs.getString(2)+","+rs.getInt(3))
}
)
jdbcRDD.foreach(println)
//打印血缘
//println(jdbcRDD.toDebugString)
}
}
(3)Mysql 写入:
def main(args: Array[String]) {
val sparkConf = new SparkConf().setMaster("local[2]").setAppName("HBaseApp")
val sc = new SparkContext(sparkConf)
val data = sc.parallelize(List("Female", "Male","Female"))
// 对每个分区执行操作
data.foreachPartition(insertData)
}
def insertData(iterator: Iterator[String]): Unit = {
Class.forName ("com.mysql.jdbc.Driver").newInstance()
val conn = java.sql.DriverManager.getConnection("jdbc:mysql://node01:3306/rdd", "root", "123456")
iterator.foreach(data => {
val ps = conn.prepareStatement("insert into rddtable(name) values (?)")
ps.setString(1, data)
ps.executeUpdate()
})
}
2.3 HBase 数据库
由于 org.apache.hadoop.hbase.mapreduce.TableInputFormat
类的实现,Spark 可以通过Hadoop输入格式访问HBase。这个输入格式会返回键值对数据,其中键的类型为org. apache.hadoop.hbase.io.ImmutableBytesWritable
,而值的类型为org.apache.hadoop.hbase.client.Result
。
(1)添加依赖
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-server</artifactId>
<version>1.3.1</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>1.3.1</version>
</dependency>
(2)从HBase读取数据
object HBaseSpark {
def main(args: Array[String]): Unit = {
//创建spark配置信息
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("JdbcRDD")
//创建SparkContext
val sc = new SparkContext(sparkConf)
//构建HBase配置信息
val conf: Configuration = HBaseConfiguration.create()
conf.set("hbase.zookeeper.quorum", "node01,node02,node03")
conf.set(TableInputFormat.INPUT_TABLE, "rddtable")
//从HBase读取数据形成RDD
val hbaseRDD: RDD[(ImmutableBytesWritable, Result)] = sc.newAPIHadoopRDD(
conf,
classOf[TableInputFormat],
classOf[ImmutableBytesWritable],
classOf[Result])
val count: Long = hbaseRDD.count()
println(count)
//对hbaseRDD进行处理
hbaseRDD.foreach {
case (_, result) =>
val key: String = Bytes.toString(result.getRow)
val name: String = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("name")))
val color: String = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("color")))
println("RowKey:" + key + ",Name:" + name + ",Color:" + color)
}
//关闭连接
sc.stop()
}
}
(3)往HBase写入
def main(args: Array[String]) {
//获取Spark配置信息并创建与spark的连接
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("HBaseApp")
val sc = new SparkContext(sparkConf)
//创建HBaseConf
val conf = HBaseConfiguration.create()
val jobConf = new JobConf(conf)
jobConf.setOutputFormat(classOf[TableOutputFormat])
jobConf.set(TableOutputFormat.OUTPUT_TABLE, "fruit_spark")
//构建Hbase表描述器
val fruitTable = TableName.valueOf("fruit_spark")
val tableDescr = new HTableDescriptor(fruitTable)
tableDescr.addFamily(new HColumnDescriptor("info".getBytes))
//创建Hbase表
val admin = new HBaseAdmin(conf)
if (admin.tableExists(fruitTable)) {
admin.disableTable(fruitTable)
admin.deleteTable(fruitTable)
}
admin.createTable(tableDescr)
//定义往Hbase插入数据的方法
def convert(triple: (Int, String, Int)) = {
val put = new Put(Bytes.toBytes(triple._1))
put.addImmutable(Bytes.toBytes("info"), Bytes.toBytes("name"), Bytes.toBytes(triple._2))
put.addImmutable(Bytes.toBytes("info"), Bytes.toBytes("price"), Bytes.toBytes(triple._3))
(new ImmutableBytesWritable, put)
}
//创建一个RDD
val initialRDD = sc.parallelize(List((1,"apple",11), (2,"banana",12), (3,"pear",13)))
//将RDD内容写到HBase
val localData = initialRDD.map(convert)
localData.saveAsHadoopDataset(jobConf)
}
本次的分享这里,受益的小伙伴或对大数据技术感兴趣的朋友不妨点个赞关注一下哟~
最后
以上就是刻苦毛衣为你收集整理的Spark之【数据读取与保存】详细说明的全部内容,希望文章能够帮你解决Spark之【数据读取与保存】详细说明所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复