我是靠谱客的博主 鲤鱼奇迹,最近开发中收集的这篇文章主要介绍TODO-项目,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1、安装linux系统,在linux系统跑python、c等项目(可以在一个服务器的集群或一台机器上对模型训练)

2、安装TensorFlow

  a、此外Python版TensorFlow也可以使用Docker安装

docker pull tensorflow/tensorflow:latest
# 可用的tag包括latest、nightly、version等
# docker镜像文件:https://hub.docker.com/r/tensorflow/tensorflow/tags/
docker run -it -p 8888:8888 tensorflow/tensorflow:latest
# dock下运行jupyter notebook
docker run -it tensorflow/tensorflow bash
# 启用编译了tensorflow的bash环境

  b、c语言安装

TensorFlow提供C语言下的API用于构建其它语言的API,支持x86-64下的Linux类系统和macOS 10.12.6 Sierra或其更高版本,macOS版不包含GPU加速 [9]  。安装过程如下 [9]  :
下载TensorFlow预编译的C文件到本地系统路径(通常为/usr/local/lib)并解压缩。
sudo tar -xz libtensorflow.tar.gz -C /usr/local
使用ldconfig编译链接
sudo ldconfig
此外用户也可在其它路径解压文件并手动编译链接。
# Linux
export LIBRARY_PATH=$LIBRARY_PATH:~/mydir/lib
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/mydir/lib
# MacOS
export LIBRARY_PATH=$LIBRARY_PATH:~/mydir/lib
export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:~/mydir/lib
编译C接口时需确保本地的C编译器(例如gcc)能够访问TensorFlow库 [9]  。

3、配置GPU

TensorFlow支持在Linux和Window系统下使用统一计算架构(Compute Unified Device Architecture, CUDA)高于3.5的NVIDIA GPU [10-11]  。配置GPU时要求系统有NVIDIA GPU驱动384.x及以上版本、CUDA Toolkit和CUPTI(CUDA Profiling Tools Interface)9.0版本、cuDNN SDK7.2以上版本。可选配置包括NCCL 2.2用于多GPU支持、TensorRT 4.0用于TensorFlow模型优化 [10]  。
在Linux下配置GPU时,将CUDA Toolkit和CUPTI的路径加入$LD_LIBRARY_PATH环境变量即可。对于CUDA为3.0或其它版本的NVIDIA程序,需要从源文件编译TensorFlow [10]  。对Windows下的GPU配置,需要将CUDA、CUPTI和cuDNN的安装路径加入%PATH%环境变量,在DOS终端有如下操作 [10]  :
  C:> SET PATH=C:Program FilesNVIDIA GPU Computing ToolkitCUDAv9.0bin;%PATH%
  C:> SET PATH=C:Program FilesNVIDIA GPU Computing ToolkitCUDAv9.0extrasCUPTIlibx64;%PATH%
  C:> SET PATH=C:toolscudabin;%PATH%
Linux系统下使用docker安装的Python版TensorFlow也可配置GPU加速且无需CUDA Toolkit [8]  :
  # 确认GPU状态
  lspci | grep -i nvidia
  # 导入GPU加速的TensorFlow镜像文件
  docker pull tensorflow/tensorflow:latest-gpu
  # 验证安装
  docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
  # 启用bash环境
docker run --runtime=nvidia -it tensorflow/tensorflow:latest-gpu bash

 

在ieee、github或cvpr上找到相关源码,然后自己可以调参:

github:

  TensorFlow、Torch

cuda

神经网络:

CNN(最简单)、SFN

转载于:https://www.cnblogs.com/smallpigger/p/10641883.html

最后

以上就是鲤鱼奇迹为你收集整理的TODO-项目的全部内容,希望文章能够帮你解决TODO-项目所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(48)

评论列表共有 0 条评论

立即
投稿
返回
顶部