我是靠谱客的博主 安静小懒虫,最近开发中收集的这篇文章主要介绍opencv进阶-DNN相关API解读,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

参考opencv官网解读:Deep Neural Network module

一、API-blobFormImage

reference:OpenCV中blobFromImage函数详细解释
作用:图像输入神经网络之前的预处理,即对输入图像进行归一化操作
函数参数如下

Mat cv::dnn::blobFromImage(
InputArray image,
double scalefactor = 1.0,
const Size & size = Size(),
const Scalar & mean = Scalar(),
bool swapRB = false,
bool crop = false,
int ddepth =8,

参数含义如下:

image:输入图像
scalefactor: multiplier for image values.
mean :
size:指的不是输入图像的尺寸,是指所需要的尺寸,也就是返回的Mat中数据的尺寸。
swapRB:是否交换R和B分量,true即转为BGR,false就意为着不需要转化
crop:输入图像大小与size不符的时候,是否需要裁剪
ddepth:图像的数据类型,目前仅支持32F和8U。即32位的浮点数( CV_32F ),因为DNN中很多参数都是浮点数,所以该参数设置默认即可。

这些参数是模型规定好的,相当于出厂设置,opencv4当中专门关于DNN的一部分内容,其中的models.yml文件就是输入图像的参数设置要求,如下路径可以查到:
D:opencv-4.1.0opencvsourcessamplesdnn
在这里插入图片描述
在这里插入图片描述

二、API-forward

作用:目标检测的前向推断,并推断出输出层的名字
用法:

Net net;
net.forward();

其中net是数据类型为Net类,命名方式不固定,可以是net1,或是net2等等。

三、API-readNetFrom深度学习框架()

1.API-readNetFromTensorflow(model,cfg)

作用:读取Tensorflow框架下的模型

使用方法:

Net net1;
net1=readNetFromTensorflow(model,cfg);
或是Net net1=readNetFromTensorflow(model,cfg);

2.API-readNetFromDarknet(cfg,model)

作用:读取Darknet框架下的YOLO模型,也只能是YOLO

3.API-readNetFromCaffe(prototxt, model)

作用:用于进行SSD网络的caffe框架的加载

参数说明

prototxt表示caffe网络的结构文本
model表示已经训练好的参数结果

四、API-net.SetInput

作用:表示将图片输入到DNN网络中

五、API-setPreferableBackend()

作用:设置加速的计算后台
括号中可填入以下参数:
如果没有IE 加速引擎的话,默认是opencv。

DNN_BACKEND_DEFAULT
DNN_BACKEND_INFERENCE_ENGINE
DNN_BACKEND_OPENCV

六、API-setPreferableTarget()

作用:表示在哪种设备上进行加速。
括号中可填入以下参数:

DNN_TARGET_CPU //如果电脑上没有GPU,只能对CPU加速。
DNN_TARGET_OPENCL //必须是英特尔的图像卡(GPU ),对其加速。
DNN_TARGET_OPENCL_FP16
DNN_TARGET_MYRIAD //英特尔的神经网络加速棒( NCS ),对其加速。
DNN_TARGET_FPGA
DNN_TARGET_CUDA
DNN_TARGET_CUDA_FP16

reference:
cv.dnn介绍及常用模块

最后

以上就是安静小懒虫为你收集整理的opencv进阶-DNN相关API解读的全部内容,希望文章能够帮你解决opencv进阶-DNN相关API解读所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(65)

评论列表共有 0 条评论

立即
投稿
返回
顶部