概述
I have installed python 2.7.0 and Teradata module on Windows 7. I am not able to connect and query TD from python.
pip install Teradata
Now I want to import teradata module in my source code and perform operations like -
Firing queries to teradata and get result set.
Check if connection is made to teradata.
Please help me writing code for the same as I am new to Python and there is no information available with me to connect to teradata.
解决方案
There are a number of ways to connect to Teradata and export table to Pandas. Here are four+:
# You can install teradata via PIP: pip install teradata
# to get a list of your odbc drivers names, you could do: teradata.tdodbc.drivers
# You don’t need to install teradata odbc driver if using method='rest'.
# See sending data from df to teradata for connection example
import teradata
import pandas as pd
host,username,password = 'HOST','UID', 'PWD'
#Make a connection
udaExec = teradata.UdaExec (appName="test", version="1.0", logConsole=False)
with udaExec.connect(method="odbc",system=host, username=username,
password=password, driver="DRIVERNAME") as connect:
query = "SELECT * FROM DATABASEX.TABLENAMEX;"
#Reading query to df
df = pd.read_sql(query,connect)
# do something with df,e.g.
print(df.head()) #to see the first 5 rows
from @ymzkala : This package doesn't require you to install Teradata drivers (other than this package).
# Installing python -m pip install teradatasql
import teradatasql
with teradatasql.connect(host='host', user='username', password='password') as connect:
df = pd.read_sql(query, connect)
import pyodbc
#You can install teradata via PIP: pip install pyodbc
#to get a list of your odbc drivers names, you could do: pyodbc.drivers()
#Make a connection
link = 'DRIVER={DRIVERNAME};DBCNAME={hostname};UID={uid};PWD={pwd}'.format(
DRIVERNAME=DRIVERNAME,hostname=hostname,
uid=username, pwd=password)
with pyodbc.connect(link,autocommit=True) as connect:
#Reading query to df
df = pd.read_sql(query,connect)
#You can install sqlalchemy via PIP: pip install sqlalchemy-teradata
#Note: It is not pip install sqlalchemy. If you already have sqlalchemy, you still need sqlalchemy-teradata to get teradata dialects
from sqlalchemy import create_engine
#Make a connection
link = 'teradata://{username}:{password}@{hostname}/?driver={DRIVERNAME}'.format(
username=username,hostname=hostname,DRIVERNAME=DRIVERNAME)
with create_engine(link) as connect:
#Reading query to df
df = pd.read_sql(query,connect)
There is a fifth way, using giraffez module. I enjoy using this module as it come with MLOAD, FASTLOAD, BULKEXPORT etc. The only issue for beginners is its requirements (e.g C/C++ compiler ,Teradata CLIv2 and TPT API headers/lib files).
Note: Updated 13-07-2018, using of context manager to ensure closing of sessions
Update: 31-10-2018: Using teradata to send data from df to teradata
We can send data from df to Teradata. Avoiding 'odbc' 1 MB limit and odbc driver dependency, we can use 'rest' method. We need host ip_address, instead of driver argument. NB: The order of columns in df should match the order of columns in Teradata table.
import teradata
import pandas as pd
# HOST_IP can be found by executing *>>nslookup viewpoint* or *ping viewpoint*
udaExec = teradata.UdaExec (appName="test", version="1.0", logConsole=False)
with udaExec.connect(method="rest",system="DBName", username="UserName",
password="Password", host="HOST_IP_ADDRESS") as connect:
data = [tuple(x) for x in df.to_records(index=False)]
connect.executemany("INSERT INTO DATABASE.TABLEWITH5COL values(?,?,?,?,?)",data,batch=True)
Using 'odbc', you have to chunk your data to less than 1MB chunks to avoid "[HY001][Teradata][ODBC Teradata Driver] Memory allocation error" error: E.g.
import teradata
import pandas as pd
import numpy as np
udaExec = teradata.UdaExec (appName="test", version="1.0", logConsole=False)
with udaExec.connect(method="odbc",system="DBName", username="UserName",
password="Password", driver="DriverName") as connect:
#We can divide our huge_df to small chuncks. E.g. 100 churchs
chunks_df = np.array_split(huge_df, 100)
#Import chuncks to Teradata
for i,_ in enumerate(chunks_df):
data = [tuple(x) for x in chuncks_df[i].to_records(index=False)]
connect.executemany("INSERT INTO DATABASE.TABLEWITH5COL values(?,?,?,?,?)",data,batch=True)
最后
以上就是优秀酒窝为你收集整理的teradata python,使用Teradata模块将Python与Teradata连接的全部内容,希望文章能够帮你解决teradata python,使用Teradata模块将Python与Teradata连接所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复