我是靠谱客的博主 平淡歌曲,最近开发中收集的这篇文章主要介绍Divide and Sum CodeForces - 1445D(排列组合+逆元)题意:题目:分析:AC代码:,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

题意:

给定一个长度为2n的数组,将数组分成两个长度为n的数组p,q,将p从小到大排序,将q从大到小排序,对于每种分法,f(p,q)= ∑ i = 1 n sum_{i=1}^{n} i=1n|xi−yi|.求总和

题目:

You are given an array a of length 2n. Consider a partition of array a into two subsequences p and q of length n each (each element of array a should be in exactly one subsequence: either in p or in q).

Let’s sort p in non-decreasing order, and q in non-increasing order, we can denote the sorted versions by x and y, respectively. Then the cost of a partition is defined as f(p,q)= ∑ i = 1 n sum_{i=1}^{n} i=1n|xi−yi|

Find the sum of f(p,q) over all correct partitions of array a. Since the answer might be too big, print its remainder modulo 998244353.

Input

The first line contains a single integer n (1≤n≤150000).

The second line contains 2n integers a1,a2,…,a2n (1≤ai≤109) — elements of array a.

Output

Print one integer — the answer to the problem, modulo 998244353.

Examples

Input

1
1 4

Output

6

Input

2
2 1 2 1

Output

12

Input

3
2 2 2 2 2 2

Output

0

Input

5
13 8 35 94 9284 34 54 69 123 846

Output

2588544

Note

Two partitions of an array are considered different if the sets of indices of elements included in the subsequence p are different.

In the first example, there are two correct partitions of the array a:

p=[1], q=[4], then x=[1], y=[4], f(p,q)=|1−4|=3;
p=[4], q=[1], then x=[4], y=[1], f(p,q)=|4−1|=3.
In the second example, there are six valid partitions of the array a:

p=[2,1], q=[2,1] (elements with indices 1 and 2 in the original array are selected in the subsequence p);
p=[2,2], q=[1,1];
p=[2,1], q=[1,2] (elements with indices 1 and 4 are selected in the subsequence p);
p=[1,2], q=[2,1];
p=[1,1], q=[2,2];
p=[2,1], q=[2,1] (elements with indices 3 and 4 are selected in the subsequence p).

分析:

1.考虑将a先从小到大排序后,可以分成前后两块,其中因为p,q的长度是固定的n。
2.求和是每个对应值差的绝对值。可以看作任意两个值交换集合,因为得到差值的绝对值相同,这里顺序对结果没有影响。
3.前面对a排序,所以对于每种方案,一定是右块的数去减左块的数,其值和为ans;
4.而所有的排列总数是 C m n C_{m}^{n} Cmn(m=2*n),所以总的答案ans=ans × C m n times C_{m}^{n} ×Cmn
5.由于是大数需要求余, C m n C_{m}^{n} Cmn= m ! n ! ( m − n ) ! frac{m!}{n!(m-n)!} n!(mn)!m!,只需拆开来算时求 n ! × n!times n× ( m − n ) ! (m-n)! (mn)!的逆元即可,又n==m-n,只需求 n ! n! n!的逆元即可,即根据费马小定理和快速幂求 n ! m o d − 2 n!^{mod-2} n!mod2.

AC代码:

#include<bits/stdc++.h>
using namespace std;
#define mod 998244353
typedef long long ll;
const int M=3e5+5;
int n,m;
ll ans,num,a,b,dp[M];
ll dfs(ll x,int y){
ll ans=1;
while(y){
if(y&1) ans=ans*x%mod;
y>>=1;
x=x*x%mod;
}
return ans;
}
int main(){
cin>>n;
m=n<<1;
for(int i=0;i<m;i++)
cin>>dp[i];
sort(dp,dp+m);
for(int i=0;i<n;i++)
ans=(ans+dp[n+i]-dp[i])%mod;
a=b=1;
for(int i=2;i<=m;i++){
b=b*i%mod;
if(i==n)
a=b;
}
num=dfs(a,mod-2);
ans=ans*b%mod*num%mod*num%mod;
cout<<ans<<endl;
return 0;
}

最后

以上就是平淡歌曲为你收集整理的Divide and Sum CodeForces - 1445D(排列组合+逆元)题意:题目:分析:AC代码:的全部内容,希望文章能够帮你解决Divide and Sum CodeForces - 1445D(排列组合+逆元)题意:题目:分析:AC代码:所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(61)

评论列表共有 0 条评论

立即
投稿
返回
顶部