我是靠谱客的博主 明亮蛋挞,最近开发中收集的这篇文章主要介绍大数据入门课程:Hadoop和spark的性能比较,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

  大数据课程,一门看似很专业实际很复杂的学科,备受追捧。因为大数据的就业前景真的很诱惑人,单单是就业薪资就能让人趋之若鹜。今天千锋大数据讲师给大家分享的技术知识是大数据入门课程之Hadoop和spark的性能比较。


  曾经看过一个非常有趣的比喻,Hadoop是一家大型包工队,可以组织一大堆人合作(HDFS)搬砖盖房(用MapReduce),但是速度比较慢。

  Spark是另一家包工队,虽然成立得晚一些,但是他们搬砖很快很灵活,可以实时交互地盖房子,比Hadoop快得多。

  Hadoop开始升级,指定调度专家YARN调度工人。Spark从多个仓库搬砖(HDFS,Cassandra,S3,HBase),还允许不同专家如YARN/ MESOS对人员和任务进行调度。

  当然,他们两家并不是水火不容。Spark经常和Hadoop团队合作,这让问题变得更加复杂。不管怎么说,Spark和Hadoop都是两个独立的包工队,都有着各自的优缺点和特定的业务用例。

  Hadoop和spark的性能比较

  Spark在内存中运行速度比Hadoop快100倍,在磁盘上运行速度快10倍。众所周知,Spark在数量只有十分之一的机器上,对100TB数据进行排序的速度比Hadoop MapReduce快3倍。此外,Spark在机器学习应用中的速度同样更快,例如Naive Bayes和k-means。

  由处理速度衡量的Spark性能之所以比Hadoop更优,原因如下:

  1、每次运行MapReduce任务时,Spark都不会受到输入输出的限制。事实证明,应用程序的速度要快得多。

  2、Spark的DAG可以在各个步骤之间进行优化。Hadoop在MapReduce步骤之间没有任何周期性连接,这意味着在该级别不会发生性能调整。

  但是,如果Spark与其他共享服务在YARN上运行,则性能可能会降低并导致RAM开销内存泄漏。出于这个原因,如果用户有批处理的诉求,Hadoop被认为是更高效的系统。

  文章写到这也该结束了,如果你对这篇文章感到意犹未尽,对大数据感兴趣,欢迎联系小编,让你和专家级讲师一起交流学习。

最后

以上就是明亮蛋挞为你收集整理的大数据入门课程:Hadoop和spark的性能比较的全部内容,希望文章能够帮你解决大数据入门课程:Hadoop和spark的性能比较所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(45)

评论列表共有 0 条评论

立即
投稿
返回
顶部