我是靠谱客的博主 迷人大树,最近开发中收集的这篇文章主要介绍Hadoop实战之课后题--分析web服务器的日志文件,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

所有代码:github-wttttt

任务

  1. 统计每个IP地址的访问次数
  2. 查找访问数最多的前K个IP地址

分析:

  1. 任务1很简单,简单的求和问题,用来重新熟悉hadoop MR程序的写法。
    • 优化:使用combiner()减少网络中的流量传输;
    • 这个例子中combiner和reducer的逻辑相同,两种使用同一个reduce即可。
    • 代码贴在附录里了,注释详细,可查看~
  2. 任务2是一个TopK的问题,要点有以下几个:
    • 使用TreeMap来得到TopK,有点类似大根堆;
    • 每个mapper得到该mapper的TopK;
    • mapper处理完了相应的input split之后才输出,使用cleanup函数来达到该目的;
    • 仅启动一个reducer以取得全局的TopK。TopK的方法类似mapper。
    • 注:这一段没看明白的宝宝可以看附录3,我引用了别人的一句话,可能讲得比我清晰- -

附录:

  • 任务1的代码:
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

// LogCount: count IP Address's visits
// map(): map each line to <IPAddress, 1>
// reduce(): add to <IPAddress, n>
// use combiner() to optimize

public class LogCount{
    public static class xxMapper 
        extends Mapper<Object, Text, Text, IntWritable>{   // extends继承类
        private final static IntWritable one = new IntWritable(1); // final常量
        private Text word = new Text();

        public void map(Object key, Text value, Context context
                ) throws IOException, InterruptedException{
            // for each line
            word.set(value.toString().split(" ")[0]);
            context.write(word,one);
            }
        }

    public static class xxReducer
        extends Reducer<Text, IntWritable, Text, IntWritable>{   // extends继承类
        private IntWritable result = new IntWritable();

        public void reduce(Text key, Iterable<IntWritable> values,
                Context context) throws IOException, InterruptedException{
            int sum = 0;
            // for each key, count it
            for (IntWritable val : values){
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }   
    }

    public static void main(String[] args) throws Exception{
        Configuration conf = new Configuration();
        // 从输入获取剩下的配置:包括输入和输出路径
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        // 输入不合理检测
        if (otherArgs.length < 2){
            System.err.println("Usage: wordcount <in> [<in>...] <out>");
            System.exit(2);
        }
        Job job = new Job(conf, "Log Count");
        job.setJarByClass(LogCount.class);
        job.setMapperClass(xxMapper.class);
        // combiner和reducer使用同一个class,当如果combiner处理逻辑相同时
        // 否则,为combiner写一个类,一般xxcombiner也是继承自Reducer
        job.setCombinerClass(xxReducer.class);  // combiner and reducer use the same class
        job.setReducerClass(xxReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        for (int i = 0; i < otherArgs.length - 1; ++i){
            FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
        }
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);

    }

}
  • 任务2的代码:
import java.io.IOException;
import java.util.Iterator;
import java.util.Map;
import java.util.TreeMap;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

/**
TopK 问题
Log_Max_k: find the max_k visiter's IP Address
map(): get TopK for each mapper 
       * Use TreeMap to store topK for each mapper
       * For each mapper: 
            for each record, we try to updata the treemap, and finally we get TopK
       * TreeMap is somewhat like a 'large root heap'.
       * Unlike usual(write after one line), we write after all the input split is handled.
            this is realized by the function 'cleanup'(conducted after the mapper task).
reduce(): get the global TopK in one Reducer
         * we need just one Reducer to ensure top-k
TopK的k值是从外部(命令行)传给Mapper&Reducer
      利用conf.set()以及conf.get()
**/

public class Log_Max_k {
    public static class xxMap extends 
                        Mapper<LongWritable, Text, Text, IntWritable>{
        /**
         * the map function
         * input file: format as: IPAddresstVisitNum  (for each line)
         */
        // TODO: <String, Integer> or <Text, Integer>
        private TreeMap<Integer, Text> tree = new TreeMap<Integer, Text>();
        public void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException{
            // TODO: conf.set() in function run()
            //在map方法中通过Context对象获取conf对象,进而取得参数值  
            Configuration conf = context. getConfiguration();  
            int K = conf.getInt("K_value", 10); // default = 10
            String[] values = value.toString().split("t");   // Tab split 
            //int visit_num = Integer.parseInt(values[1]);
            //String IPAddress = values[0];
            Text txt = new Text();
            txt.set(values[0]);
            tree.put(Integer.parseInt(values[1]), txt);
            if (tree.size() > K){
                tree.remove(tree.firstKey());  // store the top-k
            }   
        }   

        @Override
        protected void cleanup(Context context) throws IOException,
                        InterruptedException{
            /**
         * write after all the input split is handled, by the function cleanup()
             */
            // iterate on the treemap, use Iterator
            Iterator iter = tree.entrySet().iterator();
            while (iter.hasNext()){
                @SuppressWarnings("unchecked")
                Map.Entry<Integer, Text> ent = (Map.Entry<Integer, Text>)iter.next();
                // Map.Entry ent = (Map.Entry)iter.next();
                // write: IPAddress Visit_num
                context.write(ent.getValue(), new IntWritable(ent.getKey().intValue()));
            }
        }
    }

    public static class xxReduce extends Reducer<Text, IntWritable, Text, IntWritable>{
        private TreeMap<IntWritable, Text> tree = new TreeMap<IntWritable, Text>();
        public void reduce(Text key, Iterable<IntWritable> values, Context context) 
                throws IOException, InterruptedException{
            Configuration conf = context.getConfiguration();
            int K = conf.getInt("K_value", 10);   // default = 10
            for(IntWritable visit_num: values){
                tree.put(visit_num, key);
                if (tree.size() > K){
                    tree.remove(tree.firstKey());
                }
            }
            // iterate on tree, to write top-k
            Iterator iter = tree.entrySet().iterator();
            while (iter.hasNext()){
                Map.Entry<IntWritable, Text> ent =(Map.Entry<IntWritable, Text>)iter.next();
                context.write(ent.getValue(), ent.getKey());
            }   
        }
    }

    public static void main(String[] args) throws Exception{
        Configuration conf = new Configuration();
        // 从输入获取剩下的配置:包括输入和输出路径
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        // 输入不合理检测
        if (otherArgs.length < 3){
            System.err.println("Usage: wordcount <K> <in> [<in>...] <out>");
            System.exit(2);
        }
        Job job = new Job(conf, "TopKIP");
        job.setJarByClass(Log_Max_k.class);
        job.setMapperClass(xxMap.class);
        // job.setCombinerClass(xxReducer.class);  // combiner and reducer use the same class
        job.setReducerClass(xxReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        conf.set("K_value", otherArgs[0]);
        job.setNumReduceTasks(1);  // set the reducer num to 1
        for (int i = 1; i < otherArgs.length - 1; ++i){
            FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
        }
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}
  • 附录3:关于TopK问题的详细思路:

    1. Mappers
      使用默认的mapper数据,一个input split(输入分片)由一个mapper来处理。
      在每一个map task中,我们找到这个input split的前k个记录。这里我们用TreeMap这个数据结构来保存top K的数据,这样便于更新。下一步,我们来加入新记录到TreeMap中去(这里的TreeMap我感觉就是个大顶堆)。在map中,我们对每一条记录都尝试去更新TreeMap,最后我们得到的就是这个分片中的local top k的k个值。在这里要提醒一下,以往的mapper中,我们都是处理一条数据之后就context.write或者output.collector一次。而在这里不是,这里是把所有这个input split的数据处理完之后再进行写入。所以,我们可以把这个context.write放在cleanup里执行。cleanup就是整个mapper task执行完之后会执行的一个函数。
      2.reducers
      由于我前面讲了很清楚了,这里只有一个reducer,就是对mapper输出的数据进行再一次汇总,选出其中的top k,即可达到我们的目的。Note that we are using NullWritable here. The reason for this is we want all of the outputs from all of the mappers to be grouped into a single key in the reducer.

最后

以上就是迷人大树为你收集整理的Hadoop实战之课后题--分析web服务器的日志文件的全部内容,希望文章能够帮你解决Hadoop实战之课后题--分析web服务器的日志文件所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(49)

评论列表共有 0 条评论

立即
投稿
返回
顶部