我是靠谱客的博主 土豪画笔,最近开发中收集的这篇文章主要介绍RNNs网络的几种改进,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1、LightRNN

        论文题目: LightRNN: Memory and Computation-Efficient Recurrent Neural Networks

        论文链接:  https://arxiv.org/abs/1610.09893

        Github : 

        (CNTK) https://github.com/Microsoft/CNTK/tree/master/Examples/Text/LightRNN


2、SRU 

        论文题目:Training RNNs as Fast as CNNs

        论文链接:https://arxiv.org/abs/1709.02755

        Github: 

        (PyTorch) https://github.com/taolei87/sru  

        (Chainer) https://github.com/musyoku/chainer-sru

        (TensorFlow) https://github.com/desire2020/SRU-tensorflow


3、IndRNN

        论文题目: Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN

        论文链接: https://arxiv.org/abs/1803.04831

        Github:

        (Theano + Lasagne) https://github.com/Sunnydreamrain/IndRNN_Theano_Lasagne

        (TensorFlow) https://github.com/batzner/indrnn


4、Nested LSTM

        论文题目: Nested LSTMs

        论文链接:  https://arxiv.org/abs/1801.10308

        Github: 

        (TensorFlow) https://github.com/hannw/nlstm

        (Keras) https://github.com/titu1994/Nested-LSTM


5、Q-RNN

        论文题目: Quasi-Recurrent Neural Networks

        论文链接: https://arxiv.org/abs/1611.01576

        Github:

        (PyTorch) https://github.com/salesforce/pytorch-qrnn

        (PyTorch) https://github.com/JayParks/quasi-rnn

        (Keras 1.2) https://github.com/DingKe/qrnn  or

        (Keras 2.0) https://github.com/DingKe/nn_playground/tree/master/qrnn

        (Chainer) https://github.com/musyoku/chainer-qrnn        


6、Advanced-Phased-LSTM

        论文题目: Phased LSTM: Accelerating Recurrent Network Training for Long or 

                          Event-based Sequences

        论文链接:https://arxiv.org/abs/1610.09513

        Github:(TensorFlow) 

        https://github.com/jeongmincha/Advanced-Phased-LSTM/tree/master/VariablePhasedLSTM


7、ACT-RNN

        论文题目:Adaptive Computation Time for Recurrent Neural Networks

        论文链接: https://arxiv.org/abs/1603.08983v6

        Github:

        (TensorFlow) https://github.com/DeNeutoy/act-tensorflow

        (TensorFlow) https://github.com/mfigurnov/sact


8、r-LSTM / p-LSTM (带辅助损失的RNNs)

        论文题目: Learning Longer-term Dependencies in RNNs with Auxiliary Losses

        论文链接: https://arxiv.org/abs/1803.00144

        Github: (暂时没找到)


9、Advanced LSTM

        论文题目: Advanced LSTM: A Study About Better Time Dependency Modeling In 

                          Emotion Recognition

        论文链接: https://arxiv.org/abs/1710.10197

        Github: (暂时未找到)

        

最后

以上就是土豪画笔为你收集整理的RNNs网络的几种改进的全部内容,希望文章能够帮你解决RNNs网络的几种改进所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(73)

评论列表共有 0 条评论

立即
投稿
返回
顶部