我是靠谱客的博主 深情柜子,最近开发中收集的这篇文章主要介绍pandas删除异常值,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

pandas初步删除明显错误的值,对数据做初步清洗


def del_error_data(self, data):
data = data[data.IAS.between(0, 70, inclusive=True)]
data = data[data.Throttle.between(0, 115, inclusive=True)]
data = data[data.Rev.between(1, 6200, inclusive=True)]
data = data[data.AirBoxPres.between(0, 1500, inclusive=True)]
data = data[data.AmbientPres.between(300, 1100, inclusive=True)]
data = data[data.AirBoxTemp.between(-40, 96, inclusive=True)]
data = data[data.ServoLevel.between(0, 110, inclusive=True)]
data = data[data.SetPres.between(0, 1500, inclusive=True)]
data = data[data.AdjTemp.between(0, 1500, inclusive=True)]
data = data[data.CHT2.between(-40, 120, inclusive=True)]
data = data[data.CHT3.between(-40, 120, inclusive=True)]
data = data[data['Oil Temp'].between(-40, 130, inclusive=True)]
data = data[data['Inlet Temp'].between(-40, 50, inclusive=True)]
data = data[data['Oil Press'].between(0, 7, inclusive=True)]
data = data[data.EGT1.between(0, 950, inclusive=True)]
data = data[data.EGT2.between(0, 950, inclusive=True)]
data = data[data.EGT3.between(0, 950, inclusive=True)]
data = data[data.EGT4.between(0, 950, inclusive=True)]
return data

最后

以上就是深情柜子为你收集整理的pandas删除异常值的全部内容,希望文章能够帮你解决pandas删除异常值所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(56)

评论列表共有 0 条评论

立即
投稿
返回
顶部