我是靠谱客的博主 深情柜子,这篇文章主要介绍pandas删除异常值,现在分享给大家,希望可以做个参考。

pandas初步删除明显错误的值,对数据做初步清洗

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
def del_error_data(self, data): data = data[data.IAS.between(0, 70, inclusive=True)] data = data[data.Throttle.between(0, 115, inclusive=True)] data = data[data.Rev.between(1, 6200, inclusive=True)] data = data[data.AirBoxPres.between(0, 1500, inclusive=True)] data = data[data.AmbientPres.between(300, 1100, inclusive=True)] data = data[data.AirBoxTemp.between(-40, 96, inclusive=True)] data = data[data.ServoLevel.between(0, 110, inclusive=True)] data = data[data.SetPres.between(0, 1500, inclusive=True)] data = data[data.AdjTemp.between(0, 1500, inclusive=True)] data = data[data.CHT2.between(-40, 120, inclusive=True)] data = data[data.CHT3.between(-40, 120, inclusive=True)] data = data[data['Oil Temp'].between(-40, 130, inclusive=True)] data = data[data['Inlet Temp'].between(-40, 50, inclusive=True)] data = data[data['Oil Press'].between(0, 7, inclusive=True)] data = data[data.EGT1.between(0, 950, inclusive=True)] data = data[data.EGT2.between(0, 950, inclusive=True)] data = data[data.EGT3.between(0, 950, inclusive=True)] data = data[data.EGT4.between(0, 950, inclusive=True)] return data

最后

以上就是深情柜子最近收集整理的关于pandas删除异常值的全部内容,更多相关pandas删除异常值内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(71)

评论列表共有 0 条评论

立即
投稿
返回
顶部