我是靠谱客的博主 贪玩美女,这篇文章主要介绍pytorch 自定义数据读取方式,现在分享给大家,希望可以做个参考。

pytorch 自定义数据读取方式2

一个文件夹下面各个类别的图像数据都有,同时用一个对应的标签文件,比如txt文件来维护图像和标签的对应关系

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from __future__ import print_function, division import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler from torch.autograd import Variable from torchvision import models, transforms import time import os from torch.utils.data import Dataset from PIL import Image # use PIL Image to read image def default_loader(path): try: img = Image.open(path) return img.convert('RGB') except: print("Cannot read image: {}".format(path)) # define your Dataset. Assume each line in your .txt file is [name/tab/label], for example:0001.jpg 1 class customData(Dataset): def __init__(self, img_path, txt_path, dataset = '', data_transforms=None, loader = default_loader): with open(txt_path) as input_file: lines = input_file.readlines() self.img_name = [os.path.join(img_path, line.strip().split('t')[0]) for line in lines] self.img_label = [int(line.strip().split('t')[-1]) for line in lines] self.data_transforms = data_transforms self.dataset = dataset self.loader = loader def __len__(self): return len(self.img_name) def __getitem__(self, item): img_name = self.img_name[item] label = self.img_label[item] img = self.loader(img_name) if self.data_transforms is not None: try: img = self.data_transforms[self.dataset](img) except: print("Cannot transform image: {}".format(img_name)) return img, label def train_model(model, criterion, optimizer, scheduler, num_epochs, use_gpu): since = time.time() best_model_wts = model.state_dict() best_acc = 0.0 for epoch in range(num_epochs): begin_time = time.time() print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # Each epoch has a training and validation phase for phase in ['train', 'val']: count_batch = 0 if phase == 'train': scheduler.step() model.train(True) # Set model to training mode else: model.train(False) # Set model to evaluate mode running_loss = 0.0 running_corrects = 0.0 # Iterate over data. for data in dataloders[phase]: count_batch += 1 # get the inputs inputs, labels = data # wrap them in Variable if use_gpu: inputs = Variable(inputs.cuda()) labels = Variable(labels.cuda()) else: inputs, labels = Variable(inputs), Variable(labels) # zero the parameter gradients optimizer.zero_grad() # forward outputs = model(inputs) _, preds = torch.max(outputs.data, 1) loss = criterion(outputs, labels) # backward + optimize only if in training phase if phase == 'train': loss.backward() optimizer.step() # statistics running_loss += loss.data[0] running_corrects += torch.sum(preds == labels.data).to(torch.float32) # print result every 10 batch if count_batch%10 == 0: batch_loss = running_loss / (batch_size*count_batch) batch_acc = running_corrects / (batch_size*count_batch) print('{} Epoch [{}] Batch [{}] Loss: {:.4f} Acc: {:.4f} Time: {:.4f}s'. format(phase, epoch, count_batch, batch_loss, batch_acc, time.time()-begin_time)) begin_time = time.time() epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) # save model if phase == 'train': if not os.path.exists('output'): os.makedirs('output') torch.save(model, 'output/resnet_epoch{}.pkl'.format(epoch)) # deep copy the model if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = model.state_dict() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # load best model weights model.load_state_dict(best_model_wts) return model if __name__ == '__main__': data_transforms = { 'train': transforms.Compose([ transforms.RandomSizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Scale(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } use_gpu = torch.cuda.is_available() batch_size = 32 num_class = 2 image_datasets = {x: customData(img_path='/ImagePath', txt_path=('/TxtFile/' + x + '.txt'), data_transforms=data_transforms, dataset=x) for x in ['train', 'val']} # wrap your data and label into Tensor dataloders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'val']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} # get model and replace the original fc layer with your fc layer model_ft = models.resnet50(pretrained=True) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, num_class) # if use gpu if use_gpu: model_ft = model_ft.cuda() # define cost function criterion = nn.CrossEntropyLoss() # Observe that all parameters are being optimized optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.005, momentum=0.9) # Decay LR by a factor of 0.2 every 5 epochs exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=5, gamma=0.2) # multi-GPU model_ft = torch.nn.DataParallel(model_ft, device_ids=[0,1]) # train model model_ft = train_model(model=model_ft, criterion=criterion, optimizer=optimizer_ft, scheduler=exp_lr_scheduler, num_epochs=25, use_gpu=use_gpu) # save best model torch.save(model_ft,"output/best_resnet.pkl")

最后

以上就是贪玩美女最近收集整理的关于pytorch 自定义数据读取方式的全部内容,更多相关pytorch内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(91)

评论列表共有 0 条评论

立即
投稿
返回
顶部