概述
Flink 1.13 源码解析 目录汇总
Flink 1.13 源码解析——Graph的转化以及StreamGraph的构建
Flink 1.13 源码解析——Graph的转化以及ExecutionGraph的构建
目录
前言
Flink JobGraph的构建
总结
前言
在上一章中,我们分析了Flink StreamGraph的构建流程,在这一章中,我们来看看StreamGraph是如何转换成JobGraph的
概述
Flink中的Graph概念有四层,分别为StreamGraph、JobGraph、ExecutionGraph和物理执行图。其中,StreamGraph和JobGraph是在Client端完成的,或者说是在org.apache.flink.client.cli.CliFrontend类反射执行我们逻辑代码的main方法时完成的,在完成JobGraph的构建后,再将JobGraph以文件形式发送给JobManager的Dispatcher组件,并开始接下来ExecutionGraph的转化工作。
首先来看StreamGraph,StreamGraph中的每一个顶点都是一个StreamNode,这个StreamNode其实就是一个Operator,连接两个StreamNode的是StreamEdge对象。
在StreamGraph向JobGraph转化过程中,会对StreamNode进行相应的优化,根据一些条件(看源码的时候将)进行StreamNode的优化合并,合并后就成为了一个JobVertex,而每一个JobVertex就是JobGraph中的端点。JobGraph的输出对象是IntermediateDataSet,存储这JobGraph的输出内容,在JobGraph中,连接上游端点输出和下游端点的边对象叫做JobEdge。
Flink JobGraph的构建
我们回到FLink 的流式案例里flink-examples/flink-examples-streaming/src/main/java/org/apache/flink/streaming/examples/wordcount/WordCount.java,找到env.execute 方法:
DataStream<Tuple2<String, Integer>> counts =
// split up the lines in pairs (2-tuples) containing: (word,1)
// TODO
text.flatMap(new Tokenizer())
// group by the tuple field "0" and sum up tuple field "1"
.keyBy(value -> value.f0)
.sum(1);
// emit result
if (params.has("output")) {
counts.writeAsText(params.get("output"));
} else {
System.out.println("Printing result to stdout. Use --output to specify output path.");
counts.print();
}
// execute program
// TODO
env.execute("Streaming WordCount");
我们点进env.execute方法里:
public JobExecutionResult execute(String jobName) throws Exception {
Preconditions.checkNotNull(jobName, "Streaming Job name should not be null.");
// TODO 获取到StreamGraph,并执行StreamGraph
return execute(getStreamGraph(jobName));
}
在上一章里,StreamGraph的构建是通过这里的getStreamGraph方法构建的,我们这里直接来看execute方法,来看StreamGraph的执行:
public JobExecutionResult execute(StreamGraph streamGraph) throws Exception {
// 异步执行StreamGraph
final JobClient jobClient = executeAsync(streamGraph);
try {
final JobExecutionResult jobExecutionResult;
if (configuration.getBoolean(DeploymentOptions.ATTACHED)) {
// TODO 通过get方法阻塞等待StreamGraph的提交结果
jobExecutionResult = jobClient.getJobExecutionResult().get();
} else {
jobExecutionResult = new DetachedJobExecutionResult(jobClient.getJobID());
}
jobListeners.forEach(
jobListener -> jobListener.onJobExecuted(jobExecutionResult, null));
return jobExecutionResult;
} catch (Throwable t) {
// get() on the JobExecutionResult Future will throw an ExecutionException. This
// behaviour was largely not there in Flink versions before the PipelineExecutor
// refactoring so we should strip that exception.
Throwable strippedException = ExceptionUtils.stripExecutionException(t);
jobListeners.forEach(
jobListener -> {
jobListener.onJobExecuted(null, strippedException);
});
ExceptionUtils.rethrowException(strippedException);
// never reached, only make javac happy
return null;
}
}
此处的代码在之前的作业提交章节中分析过,这里就不再赘述,只说重点,我们来看StreamGraph的异步执行方法,executeAsync,点进来:
@Internal
public JobClient executeAsync(StreamGraph streamGraph) throws Exception {
checkNotNull(streamGraph, "StreamGraph cannot be null.");
checkNotNull(
configuration.get(DeploymentOptions.TARGET),
"No execution.target specified in your configuration file.");
final PipelineExecutorFactory executorFactory =
executorServiceLoader.getExecutorFactory(configuration);
checkNotNull(
executorFactory,
"Cannot find compatible factory for specified execution.target (=%s)",
configuration.get(DeploymentOptions.TARGET));
/*
TODO 异步提交得到future
*/
CompletableFuture<JobClient> jobClientFuture =
executorFactory
.getExecutor(configuration)
.execute(streamGraph, configuration, userClassloader);
try {
// TODO 阻塞获取StreamGraph的执行结果
JobClient jobClient = jobClientFuture.get();
jobListeners.forEach(jobListener -> jobListener.onJobSubmitted(jobClient, null));
return jobClient;
} catch (ExecutionException executionException) {
final Throwable strippedException =
ExceptionUtils.stripExecutionException(executionException);
jobListeners.forEach(
jobListener -> jobListener.onJobSubmitted(null, strippedException));
throw new FlinkException(
String.format("Failed to execute job '%s'.", streamGraph.getJobName()),
strippedException);
}
}
我们继续来看异步执行的步骤,点进下面这段代码的execute方法:
/*
TODO 异步提交得到future
*/
CompletableFuture<JobClient> jobClientFuture =
executorFactory
.getExecutor(configuration)
.execute(streamGraph, configuration, userClassloader);
选择AbstractSessionClusterExecutor实现:
// TODO 此处的pipeline参数就是StreamGraph
@Override
public CompletableFuture<JobClient> execute(
@Nonnull final Pipeline pipeline,
@Nonnull final Configuration configuration,
@Nonnull final ClassLoader userCodeClassloader)
throws Exception {
// TODO 通过StreamGraph构建JobGraph
final JobGraph jobGraph = PipelineExecutorUtils.getJobGraph(pipeline, configuration);
/*
TODO 到此为止,JobGraph已经构建完成,接下来开始JobGraph的提交
*/
// TODO
try (final ClusterDescriptor<ClusterID> clusterDescriptor =
clusterClientFactory.createClusterDescriptor(configuration)) {
final ClusterID clusterID = clusterClientFactory.getClusterId(configuration);
checkState(clusterID != null);
/*
TODO 用于创建RestClusterClient的 Provider: ClusterClientProvider
1. 内部会初始化得到RestClusterClient
2. 初始化RestClusterClient的时候,会初始化他内部的成员变量: RestClient
3. 在初始化RestClient的时候,也会初始化他内部的一个netty客户端
TODO 提交Job的客户端: RestClusterClient中的RestClient中的Netty客户端
TODO 接受Job的服务端: JobManager中启动的WebMonitorEndpoint中的Netty 服务端
*/
final ClusterClientProvider<ClusterID> clusterClientProvider =
clusterDescriptor.retrieve(clusterID);
ClusterClient<ClusterID> clusterClient = clusterClientProvider.getClusterClient();
/*
TODO 提交执行
1. MiniClusterClient 本地执行
2. RestClusterClient 提交到Flink Rest服务器接受处理
*/
return clusterClient
// TODO 调用RestClient 内部的netty客户端进行提交
.submitJob(jobGraph)
.thenApplyAsync(
FunctionUtils.uncheckedFunction(
jobId -> {
ClientUtils.waitUntilJobInitializationFinished(
() -> clusterClient.getJobStatus(jobId).get(),
() -> clusterClient.requestJobResult(jobId).get(),
userCodeClassloader);
return jobId;
}))
.thenApplyAsync(
jobID ->
(JobClient)
new ClusterClientJobClientAdapter<>(
clusterClientProvider,
jobID,
userCodeClassloader))
.whenCompleteAsync((ignored1, ignored2) -> clusterClient.close());
}
}
在这段代码里构建了JobGraph,并将JobGraph提交给JobManager中的Dispatcher,这里就不再去看作业提交流程,感兴趣的可以去阅读总目录里作业提交的相关章节,我们继续看JobGraph的构建流程,点进getJobGraph方法:
public static JobGraph getJobGraph(
@Nonnull final Pipeline pipeline, @Nonnull final Configuration configuration)
throws MalformedURLException {
checkNotNull(pipeline);
checkNotNull(configuration);
final ExecutionConfigAccessor executionConfigAccessor =
ExecutionConfigAccessor.fromConfiguration(configuration);
// TODO 构建JobGraph
final JobGraph jobGraph =
FlinkPipelineTranslationUtil.getJobGraph(
pipeline, configuration, executionConfigAccessor.getParallelism());
configuration
.getOptional(PipelineOptionsInternal.PIPELINE_FIXED_JOB_ID)
.ifPresent(strJobID -> jobGraph.setJobID(JobID.fromHexString(strJobID)));
jobGraph.addJars(executionConfigAccessor.getJars());
jobGraph.setClasspaths(executionConfigAccessor.getClasspaths());
jobGraph.setSavepointRestoreSettings(executionConfigAccessor.getSavepointRestoreSettings());
return jobGraph;
}
继续点进FlinkPipelineTranslationUtil.getJobGraph:
/** Transmogrifies the given {@link Pipeline} to a {@link JobGraph}. */
public static JobGraph getJobGraph(
Pipeline pipeline, Configuration optimizerConfiguration, int defaultParallelism) {
// TODO 获取FLinkPipelineTranslator翻译器
FlinkPipelineTranslator pipelineTranslator = getPipelineTranslator(pipeline);
// TODO 通过FLinkPipelineTranslator来转换获取到JobGraph
// TODO 此处 pipeline = StreamGraph
return pipelineTranslator.translateToJobGraph(
pipeline, optimizerConfiguration, defaultParallelism);
}
在这里首先获取了一个用来将StreamGraph转换为JobGraph的翻译去,然后使用翻译器来获取JobGraph,我们点进pipelineTranslator.translateToJobGraph方法,选择StreamGraphTranslator实现:
@Override
public JobGraph translateToJobGraph(
Pipeline pipeline, Configuration optimizerConfiguration, int defaultParallelism) {
checkArgument(
pipeline instanceof StreamGraph, "Given pipeline is not a DataStream StreamGraph.");
StreamGraph streamGraph = (StreamGraph) pipeline;
// TODO 通过StreamGraph转换得到JobGraph
return streamGraph.getJobGraph(null);
}
我们继续点进streamGraph.getJobGraph(null);方法:
public JobGraph getJobGraph(@Nullable JobID jobID) {
// TODO
return StreamingJobGraphGenerator.createJobGraph(this, jobID);
}
再点:
public static JobGraph createJobGraph(StreamGraph streamGraph, @Nullable JobID jobID) {
// TODO
return new StreamingJobGraphGenerator(streamGraph, jobID).createJobGraph();
}
再进来:
private JobGraph createJobGraph() {
// TODO 做一些配置参数检查校验
preValidate();
jobGraph.setJobType(streamGraph.getJobType());
jobGraph.enableApproximateLocalRecovery(
streamGraph.getCheckpointConfig().isApproximateLocalRecoveryEnabled());
// Generate deterministic hashes for the nodes in order to identify them across
// submission iff they didn't change.
// TODO 为节点生成确定性哈希,以便在提交为发生变化的情况下对其进行标识
Map<Integer, byte[]> hashes =
defaultStreamGraphHasher.traverseStreamGraphAndGenerateHashes(streamGraph);
// TODO 生成旧版Hash以向后兼容
// Generate legacy version hashes for backwards compatibility
List<Map<Integer, byte[]>> legacyHashes = new ArrayList<>(legacyStreamGraphHashers.size());
for (StreamGraphHasher hasher : legacyStreamGraphHashers) {
legacyHashes.add(hasher.traverseStreamGraphAndGenerateHashes(streamGraph));
}
/* TODO
设置Chaining,将可以Chain到一起的StreamNode chain在一起
这里会生成相应的JobVertex、JobEdge、IntermediateDataSet对象
把能chain在一起的Operator都合并了,变成了OperatorChain
*/
setChaining(hashes, legacyHashes);
// TODO 设置PhysicalEdges,将每个JobVertex的入边集合也序列化到该JobVertex的StreamConfig中
setPhysicalEdges();
setSlotSharingAndCoLocation();
setManagedMemoryFraction(
Collections.unmodifiableMap(jobVertices),
Collections.unmodifiableMap(vertexConfigs),
Collections.unmodifiableMap(chainedConfigs),
id -> streamGraph.getStreamNode(id).getManagedMemoryOperatorScopeUseCaseWeights(),
id -> streamGraph.getStreamNode(id).getManagedMemorySlotScopeUseCases());
configureCheckpointing();
jobGraph.setSavepointRestoreSettings(streamGraph.getSavepointRestoreSettings());
final Map<String, DistributedCache.DistributedCacheEntry> distributedCacheEntries =
JobGraphUtils.prepareUserArtifactEntries(
streamGraph.getUserArtifacts().stream()
.collect(Collectors.toMap(e -> e.f0, e -> e.f1)),
jobGraph.getJobID());
for (Map.Entry<String, DistributedCache.DistributedCacheEntry> entry :
distributedCacheEntries.entrySet()) {
jobGraph.addUserArtifact(entry.getKey(), entry.getValue());
}
// set the ExecutionConfig last when it has been finalized
try {
jobGraph.setExecutionConfig(streamGraph.getExecutionConfig());
} catch (IOException e) {
throw new IllegalConfigurationException(
"Could not serialize the ExecutionConfig."
+ "This indicates that non-serializable types (like custom serializers) were registered");
}
return jobGraph;
}
终于来到了我们的核心逻辑,这里首先做了一些参数校验,然后开始进行StreamNode的合并,如果判断相邻的两个StreamNode可以合并,则会合并为一个Operatorchain。
这里的逻辑大致可以理解为,挨个遍历节点:
1. 如果该节点是一个chain的头结点,就生成一个JobVertex
2. 如果不是头结点,就要把自身配置并入头节点,然后把头节点和自己的输出边相连,对于不能chain的节点,当做只有头节点处理即可
作用:
能减少线程之间的切换,减少消息的序列化/反序列化,减少数据在缓冲区的交换,减少了延迟的同时提高整体的吞吐量。
我们继续来看Flink是如何判断两个节点能否chain在一起的,点进setChaining方法
private void setChaining(Map<Integer, byte[]> hashes, List<Map<Integer, byte[]>> legacyHashes) {
// we separate out the sources that run as inputs to another operator (chained inputs)
// from the sources that needs to run as the main (head) operator.
final Map<Integer, OperatorChainInfo> chainEntryPoints =
buildChainedInputsAndGetHeadInputs(hashes, legacyHashes);
final Collection<OperatorChainInfo> initialEntryPoints =
chainEntryPoints.entrySet().stream()
.sorted(Comparator.comparing(Map.Entry::getKey))
.map(Map.Entry::getValue)
.collect(Collectors.toList());
// iterate over a copy of the values, because this map gets concurrently modified
for (OperatorChainInfo info : initialEntryPoints) {
// TODO
createChain(
info.getStartNodeId(),
1, // operators start at position 1 because 0 is for chained source inputs
info,
chainEntryPoints);
}
}
再点进createChain方法:
private List<StreamEdge> createChain(
final Integer currentNodeId,
final int chainIndex,
final OperatorChainInfo chainInfo,
final Map<Integer, OperatorChainInfo> chainEntryPoints) {
Integer startNodeId = chainInfo.getStartNodeId();
if (!builtVertices.contains(startNodeId)) {
List<StreamEdge> transitiveOutEdges = new ArrayList<StreamEdge>();
// TODO 存储可chain的StreamEdge
List<StreamEdge> chainableOutputs = new ArrayList<StreamEdge>();
// TODO 存储不可chain的StreamEdge
List<StreamEdge> nonChainableOutputs = new ArrayList<StreamEdge>();
// TODO 当前要处理的StreamNode
StreamNode currentNode = streamGraph.getStreamNode(currentNodeId);
// TODO 遍历当前StreamNode的边,可以通过边拿到边两边的StreamNode,在判断能否chain在一起
for (StreamEdge outEdge : currentNode.getOutEdges()) {
// TODO 判断一个StreamEdge连接的上下游Operator(StreamNode)是否可以chain在一起
if (isChainable(outEdge, streamGraph)) {
// TODO 加入可chain集合
chainableOutputs.add(outEdge);
} else {
// TODO 加入不可chain集合
nonChainableOutputs.add(outEdge);
}
}
// TODO 把可chain在一起的StreamEdge 两边的Operator chain在一起形成一个OperatorChain
for (StreamEdge chainable : chainableOutputs) {
// TODO 递归chain,如果可以chain在一起,这里的chainIndex + 1
// TODO 可以理解为,两个StreamNode在chain在一起后,会再去判断能否和再之前的StreamNode继续Chain在一起
transitiveOutEdges.addAll(
createChain(
chainable.getTargetId(),
chainIndex + 1,
chainInfo,
chainEntryPoints));
}
// TODO 不能chain在一起的话
for (StreamEdge nonChainable : nonChainableOutputs) {
transitiveOutEdges.add(nonChainable);
createChain(
nonChainable.getTargetId(),
1, // operators start at position 1 because 0 is for chained source inputs
chainEntryPoints.computeIfAbsent(
nonChainable.getTargetId(),
(k) -> chainInfo.newChain(nonChainable.getTargetId())),
chainEntryPoints);
}
chainedNames.put(
currentNodeId,
createChainedName(
currentNodeId,
chainableOutputs,
Optional.ofNullable(chainEntryPoints.get(currentNodeId))));
chainedMinResources.put(
currentNodeId, createChainedMinResources(currentNodeId, chainableOutputs));
chainedPreferredResources.put(
currentNodeId,
createChainedPreferredResources(currentNodeId, chainableOutputs));
OperatorID currentOperatorId =
chainInfo.addNodeToChain(currentNodeId, chainedNames.get(currentNodeId));
if (currentNode.getInputFormat() != null) {
getOrCreateFormatContainer(startNodeId)
.addInputFormat(currentOperatorId, currentNode.getInputFormat());
}
if (currentNode.getOutputFormat() != null) {
getOrCreateFormatContainer(startNodeId)
.addOutputFormat(currentOperatorId, currentNode.getOutputFormat());
}
// TODO 判断是否为chain中的第一个节点,是则开始创建JobVertex
StreamConfig config =
currentNodeId.equals(startNodeId)
? createJobVertex(startNodeId, chainInfo)
: new StreamConfig(new Configuration());
setVertexConfig(
currentNodeId,
config,
chainableOutputs,
nonChainableOutputs,
chainInfo.getChainedSources());
if (currentNodeId.equals(startNodeId)) {
config.setChainStart();
config.setChainIndex(chainIndex);
config.setOperatorName(streamGraph.getStreamNode(currentNodeId).getOperatorName());
// TODO 构建JobEdge和IntermediateDataSet
for (StreamEdge edge : transitiveOutEdges) {
connect(startNodeId, edge);
}
config.setOutEdgesInOrder(transitiveOutEdges);
config.setTransitiveChainedTaskConfigs(chainedConfigs.get(startNodeId));
} else {
chainedConfigs.computeIfAbsent(
startNodeId, k -> new HashMap<Integer, StreamConfig>());
config.setChainIndex(chainIndex);
StreamNode node = streamGraph.getStreamNode(currentNodeId);
config.setOperatorName(node.getOperatorName());
chainedConfigs.get(startNodeId).put(currentNodeId, config);
}
config.setOperatorID(currentOperatorId);
if (chainableOutputs.isEmpty()) {
config.setChainEnd();
}
return transitiveOutEdges;
} else {
return new ArrayList<>();
}
}
代码很长,我们拆分来看,主要内容有:
1、首先初始化了两个集合,来存储可chain和不可chain的StreamEdge,
2、然后获取到当前要处理的StreamNode
3、遍历当前StreamNode的边,来判断边两边上下游的StreamNode能否chain在一起,
4、将可以chain和不能chain的StreamEdge分别放入各自的集合
5、然后将可以chain的StreamNode,chain在一起形成一个OperatorChain,然后继续递归调用,判断chain完成后再下游的StreamNode能否继续chain在一起
6、将不能chain在一起的StreamNode取出,同样向下递归调用,判断下游的StreamNode能否和再下游的StreamNode合并。
7、在递归完成后判断当前节点是否是chain中的第一个StreamNode,如果是则开始构建JobVertex
8、同样判断当前节点是否是chain中的第一个StreamNode,如果是则开始构建JobEdge和IntermediateDataSet
我们来看能否chain在一起的判断依据,共有9个判断,我们点进isChainable方法:
public static boolean isChainable(StreamEdge edge, StreamGraph streamGraph) {
// TODO 获取下游端点
StreamNode downStreamVertex = streamGraph.getTargetVertex(edge);
// TODO 下游顶点的输入边只能是1,才可以进行chain的后续判断操作
// TODO 除此以外还要满足9个条件
return downStreamVertex.getInEdges().size() == 1 && isChainableInput(edge, streamGraph);
在这里首先进行了一个判断,判断下游端点的输入边只能是1才可以进行chain的后续判断操作,除此以外还需要满足9个条件,我们点进isChainableInput(edge, streamGraph)方法:
private static boolean isChainableInput(StreamEdge edge, StreamGraph streamGraph) {
// TODO 获取上下游端点
StreamNode upStreamVertex = streamGraph.getSourceVertex(edge);
StreamNode downStreamVertex = streamGraph.getTargetVertex(edge);
// TODO 判断是否能chain在一起
if (!(
// TODO 上下游算子实例处于同一个SlotSharingGroup中
upStreamVertex.isSameSlotSharingGroup(downStreamVertex)
// TODO 这里面有3个条件
&& areOperatorsChainable(upStreamVertex, downStreamVertex, streamGraph)
// TODO 两个算子建的物理分区逻辑是 ForwardPartitioner
&& (edge.getPartitioner() instanceof ForwardPartitioner)
// TODO 两个算子间的shuffle方式不等于批处理模式
&& edge.getShuffleMode() != ShuffleMode.BATCH
// TODO 上下游算子实例的并行度相同
&& upStreamVertex.getParallelism() == downStreamVertex.getParallelism()
// TODO 启动了chain
&& streamGraph.isChainingEnabled())) {
return false;
}
// check that we do not have a union operation, because unions currently only work
// through the network/byte-channel stack.
// we check that by testing that each "type" (which means input position) is used only once
for (StreamEdge inEdge : downStreamVertex.getInEdges()) {
if (inEdge != edge && inEdge.getTypeNumber() == edge.getTypeNumber()) {
return false;
}
}
return true;
}
这里有5个判断条件,分别是:
1、上下游算子实例处于同一个SlotSharingGroup中
2、两个算子间的物理分区逻辑是ForwardPartitioner
3、两个算子间的shuffle方式不是批处理模式
4、上下游算子实例的并行度相同
5、开启了chain
除此以外还有三个条件在areOperatorsChainable()方法里,我们点进来:
@VisibleForTesting
static boolean areOperatorsChainable(
StreamNode upStreamVertex, StreamNode downStreamVertex, StreamGraph streamGraph) {
// TODO 前后算子不能为空
StreamOperatorFactory<?> upStreamOperator = upStreamVertex.getOperatorFactory();
StreamOperatorFactory<?> downStreamOperator = downStreamVertex.getOperatorFactory();
if (downStreamOperator == null || upStreamOperator == null) {
return false;
}
// yielding operators cannot be chained to legacy sources
// unfortunately the information that vertices have been chained is not preserved at this
// point
if (downStreamOperator instanceof YieldingOperatorFactory
&& getHeadOperator(upStreamVertex, streamGraph).isLegacySource()) {
return false;
}
// we use switch/case here to make sure this is exhaustive if ever values are added to the
// ChainingStrategy enum
boolean isChainable;
// TODO 上游节点的chain策略为ALWAYS或HEAD(HEAD只能与下游连接,不能与上游连接,Source默认是HEAD)
switch (upStreamOperator.getChainingStrategy()) {
// TODO NEVER 表示该运算符将不会被链接到之前或之后的运算符
case NEVER:
isChainable = false;
break;
// TODO ALWAYS 表示 Operators将竭尽所能的连接在一起
case ALWAYS:
// TODO 运算符不会连接到上游,但是下游算子可以连接到此运算符
case HEAD:
case HEAD_WITH_SOURCES:
isChainable = true;
break;
default:
throw new RuntimeException(
"Unknown chaining strategy: " + upStreamOperator.getChainingStrategy());
}
// TODO 下游节点的chain策略为ALWAYS(可以与上下游连接,map、flatmap、filter等默认是ALWAYS)
switch (downStreamOperator.getChainingStrategy()) {
case NEVER:
case HEAD:
isChainable = false;
break;
case ALWAYS:
// keep the value from upstream
break;
case HEAD_WITH_SOURCES:
// only if upstream is a source
isChainable &= (upStreamOperator instanceof SourceOperatorFactory);
break;
default:
throw new RuntimeException(
"Unknown chaining strategy: " + upStreamOperator.getChainingStrategy());
}
return isChainable;
}
在这里进行了三个判断:
1、上下游算子不能为空
2、上有节点的chain策略应当为ALWAYS、HEAD或HEAD_WITH_SOURCES,而不能为NEVER
3、下有节点的chain策略应当为ALWAYS或者当策略为HEAD_WITH_SOURCES时判断上游算子是不是Source算子,但是不能为HEAD策略或NEVER策略。
到这里StreamGraph到JobGraph的核心内容就分析完了。
总结
StreamGraph到JobGraph的转化中,我认为最重要的两点就是StreamNode怎么合并,和根据什么样的条件来判断是否应该合并,对此有以下总结内容:
9个合并条件:
1、下游端点的输入边是否为1
2、上下游算子实例处于同一个SlotSharingGroup中
3、两个算子间的物理分区逻辑是ForwardPartitioner
4、两个算子间的shuffle方式不是批处理模式
5、上下游算子实例的并行度相同
6、开启了chain
7、上下游算子不能为空
8、上有节点的chain策略应当为ALWAYS、HEAD或HEAD_WITH_SOURCES,而不能为NEVER
9、下有节点的chain策略应当为ALWAYS或者当策略为HEAD_WITH_SOURCES时判断上游算子是不是Source算子,但是不能为HEAD策略或NEVER策略。
如何合并:
1、首先初始化了两个集合,来存储可chain和不可chain的StreamEdge,
2、然后获取到当前要处理的StreamNode
3、遍历当前StreamNode的边,来判断边两边上下游的StreamNode能否chain在一起,
4、将可以chain和不能chain的StreamEdge分别放入各自的集合
5、然后将可以chain的StreamNode,chain在一起形成一个OperatorChain,然后继续递归调用,判断chain完成后再下游的StreamNode能否继续chain在一起
6、将不能chain在一起的StreamNode取出,同样向下递归调用,判断下游的StreamNode能否和再下游的StreamNode合并。
7、在递归完成后判断当前节点是否是chain中的第一个StreamNode,如果是则开始构建JobVertex
8、同样判断当前节点是否是chain中的第一个StreamNode,如果是则开始构建JobEdge和IntermediateDataSet
在下一章中我们来分析JobGraph向ExecutionGraph转化的核心内容。
最后
以上就是知性方盒为你收集整理的Flink 1.13 源码解析——Graph的转化以及JobGraph的构建前言概述Flink JobGraph的构建总结的全部内容,希望文章能够帮你解决Flink 1.13 源码解析——Graph的转化以及JobGraph的构建前言概述Flink JobGraph的构建总结所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复