我是靠谱客的博主 苗条缘分,最近开发中收集的这篇文章主要介绍PRML一书中关于贝叶斯曲线拟合结论的推导细节,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

PRML一书中关于贝叶斯曲线拟合结论的推导细节

我们令训练数据集为 ( X , T ) (X,T) (X,T), 对于一个新的点 x x x, 我们希望给出一个预测分布 p ( t ∣ x , X , T ) p(t|x, X, T) p(tx,X,T)
p ( t ∣ x , X , T ) = ∫ p ( t ∣ x , w , X , T ) d w = ∫ p ( t ∣ x , w ) p ( w ∣ X , T ) d w p(t|x,X,T) =int p(t|x,w,X,T)dw= int p(t|x,w)p(w|X,T)dw \ p(tx,X,T)=p(tx,w,X,T)dw=p(tx,w)p(wX,T)dw
其中, w = [ w 0 , w 1 , . . . , w M ] T w=[w_0,w_1,...,w_M]^T w=[w0,w1,...,wM]T M M M阶多项式的参数
在PRML一书中,直接给出了这么一个结论

预测分布由高斯分布 N ( t ∣ m ( x ) , s 2 ( x ) ) mathcal N(t|m(x),s^2(x)) N(tm(x),s2(x))给出
其中均值 m ( x ) = β ϕ ( x ) T S ∑ n = 1 N ϕ ( x n ) t n m(x) = betaphi(x)^TSsum_{n=1}^{N}phi(x_n)t_n m(x)=βϕ(x)TSn=1Nϕ(xn)tn
方差 s 2 ( x ) = β − 1 + ϕ ( x ) T S ϕ ( x ) s^2(x) = beta^{-1} + phi(x)^TSphi(x) s2(x)=β1+ϕ(x)T(x)
其中 S − 1 = α I + β ∑ n = 1 N ϕ ( x n ) ϕ ( x n ) T S^{-1} = alpha I +betasum_{n=1}^{N}phi(x_n)phi(x_n)^T S1=αI+βn=1Nϕ(xn)ϕ(xn)T, ϕ ( x ) = [ 1 , x , x 2 , . . . , x M ] T phi(x)=[1,x,x^2,...,x^M]^T ϕ(x)=[1,x,x2,...,xM]T

这个结论给的非常突然,让人无所适从,我决定花点时间分析一下,并记录下来,以供大家参考!

如上式所述,其可以被写成积分的形式,我们利用一些结论来进行分析

  1. 首先对于t的分布应该是一个高斯分布,

p ( t ∣ x , w ) = N ( t ∣ y ( x , w ) , β − 1 ) p(t|x,w) = mathcal N(t|y(x,w), beta^{-1}) p(tx,w)=N(ty(x,w),β1)

  1. 对于分布 p ( w ∣ X , T ) p(w|X,T) p(wX,T), 其正比于先验分布和似然的乘积

p ( w ∣ X , T , α , β ) ∝ p ( T ∣ X , w , β ) p ( w ∣ α ) p(w|X,T, alpha, beta) varpropto p(T|X, w, beta)p(w|alpha) p(wX,T,α,β)p(TX,w,β)p(wα)

​ 如果 α , β alpha, beta α,β 已知, 可以写成:
p ( w ∣ X , T ) = p ( T ∣ X , w ) p ( X , w ) p ( X , T ) = p ( T ∣ X , w ) p ( w ∣ X ) p ( X ) p ( T ∣ X ) p ( X ) = p ( T ∣ X , w ) p ( w ∣ X ) p ( T ∣ X ) p(w|X,T) = frac{p(T|X,w)p(X,w)}{p(X,T)} = frac{p(T|X,w)p(w|X)p(X)}{p(T|X)p(X)} = frac{p(T|X,w)p(w|X)}{p(T|X)} p(wX,T)=p(X,T)p(TX,w)p(X,w)=p(TX)p(X)p(TX,w)p(wX)p(X)=p(TX)p(TX,w)p(wX)
所以我们可以继续将积分式子改写:
p ( t ∣ x , X , T ) = ∫ N ( t ∣ y ( x , w ) , β − 1 ) ∏ n = 1 N N ( t n ∣ y ( x n , w ) , β − 1 ) p ( w ∣ X ) p ( T ∣ X ) d w p(t|x,X,T) = int mathcal N(t|y(x,w), beta^{-1}) prod_{n=1}^Nmathcal N(t_n|y(x_n, w), beta^{-1})frac{p(w|X)}{p(T|X)}dw p(tx,X,T)=N(ty(x,w),β1)n=1NN(tny(xn,w),β1)p(TX)p(wX)dw

y ( x , w ) = w 0 + w 1 x + w 2 x 2 + ⋯ + w M x M = ϕ ( x ) T [ w 0 , w 1 , . . . , w M ] T = ϕ ( x ) T w ϕ ( x ) = [ 1 , x , x 2 , . . . , x M ] T y(x,w) = w_0 + w_1x + w_2x^2 + cdots + w_Mx^M = phi(x)^T[w_0, w_1, ..., w_M]^T = phi(x)^Tw\ phi(x) = [1,x,x^2,...,x^M]^T y(x,w)=w0+w1x+w2x2++wMxM=ϕ(x)T[w0,w1,...,wM]T=ϕ(x)Twϕ(x)=[1,x,x2,...,xM]T

从而,对于高斯分布 N ( t ∣ y ( x , w ) , β − 1 ) mathcal N(t|y(x,w), beta^{-1}) N(ty(x,w),β1), 可以写成:
N ( t ∣ y ( x , w ) , β − 1 ) = 1 2 π β − 1 exp ⁡ ( − ( t − y ( x , w ) ) 2 2 β − 1 ) = 1 2 π β − 1 exp ⁡ ( − ( t − ϕ ( x ) T w ) 2 2 β − 1 ) mathcal N(t|y(x,w), beta^{-1}) = frac{1}{sqrt{2pibeta^{-1}}}exp(-frac{(t-y(x,w))^2}{2beta^{-1}}) = frac{1}{sqrt{2pibeta^{-1}}}exp(-frac{(t-phi(x)^Tw)^2}{2beta^{-1}}) N(ty(x,w),β1)=2πβ1 1exp(2β1(ty(x,w))2)=2πβ1 1exp(2β1(tϕ(x)Tw)2)
同样的,我们可以写出N个高斯分布乘积的形式
∏ n = 1 N N ( t n ∣ y ( x n , w ) , β − 1 ) = ( 1 2 π β − 1 ) N / 2 exp ⁡ ( − β 2 ∑ n = 1 N ( t n − ϕ ( x n ) T w ) 2 ) prod_{n=1}^Nmathcal N(t_n|y(x_n, w), beta^{-1})=(frac{1}{2pibeta^{-1}})^{N/2}exp(-frac{beta}{2}sum_{n=1}^N(t_n-phi(x_n)^Tw)^2) n=1NN(tny(xn,w),β1)=(2πβ11)N/2exp(2βn=1N(tnϕ(xn)Tw)2)
于是,如下:
N ( t ∣ y ( x , w ) , β − 1 ) ∏ n = 1 N N ( t n ∣ y ( x n , w ) , β − 1 ) = ( 1 2 π β − 1 ) ( N + 1 ) / 2 exp ⁡ ( − β 2 ( ( t − ϕ ( x ) T w ) 2 + ∑ n = 1 N ( t n − ϕ ( x n ) T w ) 2 ) ) mathcal N(t|y(x,w), beta^{-1}) prod_{n=1}^Nmathcal N(t_n|y(x_n, w), beta^{-1}) = (frac{1}{2pibeta^{-1}})^{(N+1)/2}exp(-frac{beta}{2}((t-phi(x)^Tw)^2 + sum_{n=1}^N(t_n-phi(x_n)^Tw)^2)) N(ty(x,w),β1)n=1NN(tny(xn,w),β1)=(2πβ11)(N+1)/2exp(2β((tϕ(x)Tw)2+n=1N(tnϕ(xn)Tw)2))
如果我们将 p ( w ∣ X ) = p ( w ∣ α ) = ( α 2 π ) ( M + 1 ) / 2 exp ⁡ ( − α 2 w T w ) p(w|X) = p(w|alpha) = (frac{alpha}{2pi})^{(M+1)/2}exp(-frac{alpha}{2}w^Tw) p(wX)=p(wα)=(2πα)(M+1)/2exp(2αwTw), 且 p ( T ∣ X ) = 1 p(T|X)=1 p(TX)=1

则有
p ( t ∣ x , X , T ) = ( β 2 π ) N + 1 2 ( α 2 π ) M + 1 2 ∫ exp ⁡ ( − α 2 w T w − β 2 ( ( t − ϕ ( x ) T w ) 2 + ∑ n = 1 N ( t n − ϕ ( x n ) T w ) 2 ) ) d w p(t|x,X,T) = (frac{beta}{2pi })^{frac{N+1}{2}} (frac{alpha}{2pi})^{ frac{M+1}{2}}int expBig(-frac{alpha}{2}w^Tw -frac{beta}{2}((t-phi(x)^Tw)^2 + sum_{n=1}^N(t_n-phi(x_n)^Tw)^2) Big ) dw p(tx,X,T)=(2πβ)2N+1(2πα)2M+1exp(2αwTw2β((tϕ(x)Tw)2+n=1N(tnϕ(xn)Tw)2))dw

注意到,高斯积分的形式
∫ − ∞ + ∞ e − a ( x + b ) 2 d x = π a int _{-infin}^{+infin}e^{-a(x+b)^2} dx = sqrt{frac{pi}{a}} +ea(x+b)2dx=aπ
故,
∫ exp ⁡ ( − α 2 w T w − β 2 ( ( t − ϕ ( x ) T w ) 2 + ∑ n = 1 N ( t n − ϕ ( x n ) T w ) 2 ) ) d w = ∫ exp ⁡ ( − k ( w + b ) 2 + u ) d w k = α 2 + β 2 ( ϕ ( x ) T ϕ ( x ) + ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) ) int expBig(-frac{alpha}{2}w^Tw -frac{beta}{2}((t-phi(x)^Tw)^2 + sum_{n=1}^N(t_n-phi(x_n)^Tw)^2) Big ) dw = intexp(-k(w+b)^2+u)dw\ k = frac{alpha}{2} + frac{beta}{2}(phi(x)^Tphi(x) + sum_{n=1}^{N}phi(x_n)^Tphi(x_n)) exp(2αwTw2β((tϕ(x)Tw)2+n=1N(tnϕ(xn)Tw)2))dw=exp(k(w+b)2+u)dwk=2α+2β(ϕ(x)Tϕ(x)+n=1Nϕ(xn)Tϕ(xn))
相当于对于一个二次式进行配方,我们简单记作:
− m 1 w 2 − m 2 ( m 3 w 2 + m 4 w + m 5 ) m 1 = α 2 , m 2 = β 2 m 3 = ϕ ( x ) T ϕ ( x ) + ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) m 4 = − 2 ( t ϕ ( x ) T + ∑ n = 1 N t n ϕ ( x n ) T ) m 5 = t 2 + ∑ n = 1 N t n 2 -m_1w^2-m_2(m_3w^2+m_4w+m_5)\ m_1 = frac{alpha}{2}, m_2=frac{beta}{2}\ m_3 = phi(x)^Tphi(x) + sum_{n=1}^Nphi(x_n)^Tphi(x_n)\ m_4 =-2(tphi(x)^T + sum_{n=1}^Nt_nphi(x_n)^T)\ m_5 = t^2 + sum_{n=1}^Nt_n^2 m1w2m2(m3w2+m4w+m5)m1=2α,m2=2βm3=ϕ(x)Tϕ(x)+n=1Nϕ(xn)Tϕ(xn)m4=2((x)T+n=1Ntnϕ(xn)T)m5=t2+n=1Ntn2
从而,
− ( m 1 + m 2 m 3 ) w 2 − m 2 m 4 w − m 2 m 5 = − ( m 1 + m 2 m 3 ) ( w 2 + m 2 m 4 m 1 + m 2 m 3 w + m 2 m 5 m 1 + m 2 m 3 ) = − ( m 1 + m 2 m 3 ) [ ( w + m 2 m 4 2 ( m 1 + m 2 m 3 ) ) 2 + m 2 m 5 m 1 + m 2 m 3 − m 2 2 m 4 2 4 ( m 1 + m 2 m 3 ) 2 ] = − ( m 1 + m 2 m 3 ) [ ( w + m 2 m 4 2 ( m 1 + m 2 m 3 ) ) 2 + 4 ( m 1 + m 2 m 3 ) m 2 m 5 − m 2 2 m 4 2 4 ( m 1 + m 2 m 3 ) 2 ] = − ( m 1 + m 2 m 3 ) ( w + m 2 m 4 2 ( m 1 + m 2 m 3 ) ) 2 + 4 ( m 1 + m 2 m 3 ) m 2 m 5 − m 2 2 m 4 2 4 ( m 1 + m 2 m 3 ) -(m_1+m_2m_3)w^2 - m_2m_4w - m_2m_5=-(m_1+m_2m_3)(w^2+frac{m_2m_4}{m_1+m_2m_3}w + frac{m_2m_5}{m_1+m_2m_3})\ =-(m_1+m_2m_3)[(w+frac{m_2m_4}{2(m_1+m_2m_3)})^2 + frac{m_2m_5}{m_1+m_2m_3} - frac{m_2^2m_4^2}{4(m_1+m_2m_3)^2}]\ =-(m_1+m_2m_3)[(w+frac{m_2m_4}{2(m_1+m_2m_3)})^2 + frac{4(m_1+m_2m_3)m_2m_5 -m_2^2m_4^2}{4(m_1+m_2m_3)^2}]\ =-(m_1+m_2m_3)(w+frac{m_2m_4}{2(m_1+m_2m_3)})^2 + frac{4(m_1+m_2m_3)m_2m_5 -m_2^2m_4^2}{4(m_1+m_2m_3)} (m1+m2m3)w2m2m4wm2m5=(m1+m2m3)(w2+m1+m2m3m2m4w+m1+m2m3m2m5)=(m1+m2m3)[(w+2(m1+m2m3)m2m4)2+m1+m2m3m2m54(m1+m2m3)2m22m42]=(m1+m2m3)[(w+2(m1+m2m3)m2m4)2+4(m1+m2m3)24(m1+m2m3)m2m5m22m42]=(m1+m2m3)(w+2(m1+m2m3)m2m4)2+4(m1+m2m3)4(m1+m2m3)m2m5m22m42
存在一个常数项,即
4 ( m 1 + m 2 m 3 ) m 2 m 5 − m 2 2 m 4 2 4 ( m 1 + m 2 m 3 ) = β ( α + β m 3 ) m 5 − 4 − 1 β 2 m 4 2 2 ( α + β m 3 ) frac{4(m_1+m_2m_3)m_2m_5 -m_2^2m_4^2}{4(m_1+m_2m_3)} = frac{beta(alpha + beta m_3)m_5 - 4^{-1}beta^2m_4^2}{2(alpha + beta m_3)} 4(m1+m2m3)4(m1+m2m3)m2m5m22m42=2(α+βm3)β(α+βm3)m541β2m42

从而,
∫ exp ⁡ ( − α 2 w T w − β 2 ( ( t − ϕ ( x ) T w ) 2 + ∑ n = 1 N ( t n − ϕ ( x n ) T w ) 2 ) ) d w = π k exp ⁡ ( β ( α + β m 3 ) m 5 − 4 − 1 β 2 m 4 2 2 ( α + β m 3 ) ) int expBig(-frac{alpha}{2}w^Tw -frac{beta}{2}((t-phi(x)^Tw)^2 + sum_{n=1}^N(t_n-phi(x_n)^Tw)^2) Big ) dw = sqrt{frac{pi}{k}}exp( frac{beta(alpha + beta m_3)m_5 - 4^{-1}beta^2m_4^2}{2(alpha + beta m_3)}) exp(2αwTw2β((tϕ(x)Tw)2+n=1N(tnϕ(xn)Tw)2))dw=kπ exp(2(α+βm3)β(α+βm3)m541β2m42)
代入到原式得
p ( t ∣ x , X , T ) = ( β 2 π ) N + 1 2 ( α 2 π ) M + 1 2 π k exp ⁡ ( β ( α + β m 3 ) m 5 − 4 − 1 β 2 m 4 2 2 ( α + β m 3 ) ) p(t|x,X,T)= (frac{beta}{2pi })^{frac{N+1}{2}} (frac{alpha}{2pi})^{ frac{M+1}{2}}sqrt{frac{pi}{k}}exp( frac{beta(alpha + beta m_3)m_5 - 4^{-1}beta^2m_4^2}{2(alpha + beta m_3)})\ p(tx,X,T)=(2πβ)2N+1(2πα)2M+1kπ exp(2(α+βm3)β(α+βm3)m541β2m42)
对于指数部分的系数:
( β 2 π ) N + 1 2 ( α 2 π ) M + 1 2 π k = ( ( β N + 1 α M + 1 ( 2 π ) N + M + 2 ( α 2 + β 2 ( ϕ ( x ) T ϕ ( x ) + ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) ) ) ) ) 1 / 2 (frac{beta}{2pi })^{frac{N+1}{2}} (frac{alpha}{2pi})^{ frac{M+1}{2}}sqrt{frac{pi}{k}}=Big((frac{beta^{N+1}alpha^{M+1}}{(2pi)^{N+M+2}} (frac{alpha}{2}+frac{beta}{2}(phi(x)^Tphi(x) + sum_{n=1}^{N}phi(x_n)^Tphi(x_n))))Big)^{1/2} (2πβ)2N+1(2πα)2M+1kπ =(((2π)N+M+2βN+1αM+1(2α+2β(ϕ(x)Tϕ(x)+n=1Nϕ(xn)Tϕ(xn)))))1/2
而指数部分为:
β ( α + β m 3 ) m 5 − 4 − 1 β 2 m 4 2 2 ( α + β m 3 ) = β ( α + β m 3 ) ( t 2 + t s u m ) − 1 4 β 2 ( − 2 ( t ϕ ( x ) T + ∑ n = 1 N t n ϕ ( x n ) T ) ) 2 2 ( α + β m 3 ) = β ( α + β m 3 ) ( t 2 + t s u m ) − β 2 ( t ϕ ( x ) T + q ) 2 2 ( α + β m 3 ) = [ α β + β 2 m 3 − β 2 ϕ ( x ) T ϕ ( x ) ] ⋅ t 2 − 2 β 2 ϕ ( x ) T q T t + ( α β + β 2 m 3 ) t s u m − β 2 q q T 2 ( α + β m 3 ) = [ α β + β 2 v ] ⋅ t 2 − 2 β 2 ϕ ( x ) T q T t + ( α β + β 2 m 3 ) t s u m − β 2 q q T 2 ( α + β m 3 ) = ( α β + β 2 v ) t 2 − 2 β 2 ϕ ( x ) T q T α β + β 2 v t + ( α β + β 2 m 3 ) t s u m − β 2 q q T α β + β 2 v 2 ( α + β m 3 ) = ( α β + β 2 v ) ( t − β 2 ϕ ( x ) T q T α β + β 2 v ) 2 − ( β 2 ϕ ( x ) T q T ) 2 ( α β + β 2 v ) 2 + ( α β + β 2 m 3 ) t s u m − β 2 q q T α β + β 2 v 2 ( α + β m 3 ) t s u m = ∑ n = 1 N t n 2 q = ∑ n = 1 N t n ϕ ( x n ) T v = ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) frac{beta(alpha + beta m_3)m_5 - 4^{-1}beta^2m_4^2}{2(alpha + beta m_3)} = frac{beta(alpha + beta m_3)(t^2 + t_{sum}) - frac{1}{4}beta^2(-2(tphi(x)^T + sum_{n=1}^Nt_nphi(x_n)^T))^2}{2(alpha +beta m_3)}\ =frac{beta(alpha + beta m_3)(t^2 + t_{sum}) - beta^2(tphi(x)^T + q)^2}{2(alpha +beta m_3)} =frac{[alpha beta + beta^2 m_3 - beta^2phi(x)^Tphi(x)]cdot t^2 -2beta^2 phi(x)^Tq^T t + (alphabeta+beta^2 m_3)t_{sum}-beta^2qq^T}{2(alpha +beta m_3)} \ =frac{[alpha beta + beta^2 v]cdot t^2 -2beta^2 phi(x)^Tq^T t + (alphabeta+beta^2 m_3)t_{sum}-beta^2qq^T}{2(alpha +beta m_3)}\ =(alpha beta + beta^2 v)frac{t^2 -2frac{beta^2 phi(x)^Tq^T}{alpha beta + beta^2 v} t + frac{(alphabeta+beta^2 m_3)t_{sum}-beta^2qq^T}{alpha beta + beta^2 v}}{2(alpha +beta m_3)} =(alpha beta + beta^2 v)frac{ (t -frac{beta^2 phi(x)^Tq^T}{alpha beta + beta^2 v})^2 -frac{(beta^2 phi(x)^Tq^T)^2}{(alpha beta + beta^2 v)^2} + frac{(alphabeta+beta^2 m_3)t_{sum}-beta^2qq^T}{alpha beta + beta^2 v}}{2(alpha +beta m_3)} \ t_{sum} = sum_{n=1}^Nt_n^2\ q = sum_{n=1}^Nt_nphi(x_n)^T\ v = sum_{n=1}^Nphi(x_n)^Tphi(x_n) 2(α+βm3)β(α+βm3)m541β2m42=2(α+βm3)β(α+βm3)(t2+tsum)41β2(2((x)T+n=1Ntnϕ(xn)T))2=2(α+βm3)β(α+βm3)(t2+tsum)β2((x)T+q)2=2(α+βm3)[αβ+β2m3β2ϕ(x)Tϕ(x)]t22β2ϕ(x)TqTt+(αβ+β2m3)tsumβ2qqT=2(α+βm3)[αβ+β2v]t22β2ϕ(x)TqTt+(αβ+β2m3)tsumβ2qqT=(αβ+β2v)2(α+βm3)t22αβ+β2vβ2ϕ(x)TqTt+αβ+β2v(αβ+β2m3)tsumβ2qqT=(αβ+β2v)2(α+βm3)(tαβ+β2vβ2ϕ(x)TqT)2(αβ+β2v)2(β2ϕ(x)TqT)2+αβ+β2v(αβ+β2m3)tsumβ2qqTtsum=n=1Ntn2q=n=1Ntnϕ(xn)Tv=n=1Nϕ(xn)Tϕ(xn)
故,我们可以从上式中,直接推出均值
m ( x ) = β 2 ϕ ( x ) T q T α β + β 2 v = β ϕ ( x ) T q T α + β v = ( α + β ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) ) − 1 ( β ϕ ( x ) T ∑ n = 1 N ϕ ( x n ) t n ) = β ϕ ( x ) T S ∑ n = 1 N ϕ ( x n ) t n S − 1 = α + β ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) m(x)=frac{beta^2 phi(x)^Tq^T}{alpha beta + beta^2 v} = frac{beta phi(x)^Tq^T}{alpha + beta v} = (alpha+beta sum_{n=1}^Nphi(x_n)^Tphi(x_n))^{-1}(betaphi(x)^Tsum_{n=1}^{N}phi(x_n)t_n) = beta phi(x)^TSsum_{n=1}^{N}phi(x_n)t_n\ S^{-1} = alpha+beta sum_{n=1}^Nphi(x_n)^Tphi(x_n) m(x)=αβ+β2vβ2ϕ(x)TqT=α+βvβϕ(x)TqT=(α+βn=1Nϕ(xn)Tϕ(xn))1(βϕ(x)Tn=1Nϕ(xn)tn)=βϕ(x)TSn=1Nϕ(xn)tnS1=α+βn=1Nϕ(xn)Tϕ(xn)
倘若上述配方成功,方差为
s 2 ( x ) = α + β m 3 α β + β 2 v = α + β ( ϕ ( x ) T ϕ ( x ) + ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) ) α β + β 2 ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) = α + β ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) + β ϕ ( x ) T ϕ ( x ) α β + β 2 ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) = 1 β + ϕ ( x ) T ϕ ( x ) α + β ∑ n = 1 N ϕ ( x n ) T ϕ ( x n ) = β − 1 + S ϕ ( x ) T ϕ ( x ) s^2(x)=frac{alpha + beta m_3}{alpha beta + beta^2 v} = frac{alpha+beta(phi(x)^Tphi(x) + sum_{n=1}^Nphi(x_n)^Tphi(x_n))}{alphabeta + beta^2sum_{n=1}^Nphi(x_n)^Tphi(x_n) } =frac{alpha+betasum_{n=1}^Nphi(x_n)^Tphi(x_n) + beta phi(x)^Tphi(x)}{alphabeta + beta^2sum_{n=1}^Nphi(x_n)^Tphi(x_n) }\ =frac{1}{beta} + frac{phi(x)^Tphi(x)}{alpha + beta sum_{n=1}^Nphi(x_n)^Tphi(x_n) }\ = beta^{-1} + Sphi(x)^Tphi(x) s2(x)=αβ+β2vα+βm3=αβ+β2n=1Nϕ(xn)Tϕ(xn)α+β(ϕ(x)Tϕ(x)+n=1Nϕ(xn)Tϕ(xn))=αβ+β2n=1Nϕ(xn)Tϕ(xn)α+βn=1Nϕ(xn)Tϕ(xn)+βϕ(x)Tϕ(x)=β1+α+βn=1Nϕ(xn)Tϕ(xn)ϕ(x)Tϕ(x)=β1+(x)Tϕ(x)

最后

以上就是苗条缘分为你收集整理的PRML一书中关于贝叶斯曲线拟合结论的推导细节的全部内容,希望文章能够帮你解决PRML一书中关于贝叶斯曲线拟合结论的推导细节所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(85)

评论列表共有 0 条评论

立即
投稿
返回
顶部