概述
原题地址
题意
维护两个操作
- 区间加
- 区间GCD
Soluiton
这里有一个很巧妙的方法——更相减损术
就是数论里的加减法对GCD封闭
也就是 g c d ( a 1 , a 2 , . . . , a n ) = g c d ( a 1 , a 2 − a 1 , a 3 − a 2 , . . . , a n − a n − 1 ) gcd(a_1, a_2, ..., a_n)=gcd(a_1, a_2-a_1, a_3-a_2, ..., a_n-a_{n-1}) gcd(a1,a2,...,an)=gcd(a1,a2−a1,a3−a2,...,an−an−1)
于是就可以把区间修改转换成了两个端点的修改(只需要对原数组做一次查分即可)
对于维护 g c d ( l → r ) gcd(l to r) gcd(l→r),可以通过线段树求出 g c d ( l + 1 → r ) gcd(l + 1to r) gcd(l+1→r),而 a [ l ] a[l] a[l]需要再通过一棵线段树或树状数组来维护
坑——题目最上方说N<=5e5,下方是2e5,要以大的为准,同时需要开long long
Code
#include <cstdio>
#define N 500010
using namespace std;
typedef long long LL;
LL sub[N << 2], a[N], b[N], n, tree[N];
inline LL gcdd(LL x, LL y) { if (y == 0) return x; return gcdd(y, x % y); }
inline LL gcd(LL x, LL y) { if (x < 0) x = -x; if (y < 0) y = -y; return gcdd(x, y); }
inline void pushup(LL rt) { sub[rt] = gcd(sub[rt << 1], sub[rt << 1 | 1]); }
inline LL lowbit(LL x) { return x & -x; }
inline void update(LL l, LL x) { while (l <= n) { tree[l] += x; l += lowbit(l); } }
inline LL query_tree(LL x) { LL ans = 0; while (x > 0) { ans += tree[x]; x -= lowbit(x); } return ans; }
inline void build(LL l, LL r, LL rt) {
if (l == r) { sub[rt] = b[l]; return; } LL mid = l + r >> 1;
build(l, mid, rt << 1); build(mid + 1, r, rt << 1 | 1);
pushup(rt);
}
inline void modify(LL l, LL r, LL P, LL rt, LL v) {
if (P < l || P > r) return;
if (l == r) { sub[rt] += v; return; } LL mid = l + r >> 1;
modify(l, mid , P, rt << 1, v); modify(mid + 1, r, P, rt << 1 | 1, v);
pushup(rt);
}
inline LL query(LL l, LL r, LL L, LL R, LL rt) {
if (r < L || l > R) return 0; if (L <= l && r <= R) return sub[rt];
LL mid = l + r >> 1, ls = query(l, mid, L, R, rt << 1), rs = query(mid + 1, r, L, R, rt << 1 | 1);
// prLLf("%d %dn", ls, rs);
return gcd(ls, rs);
}
int main() {
LL m, l, r, num;
scanf("%lld%lld", &n, &m);
for (LL i = 1; i <= n; ++i) scanf("%lld", &a[i]);
for (LL i = n; i >= 1; --i) {
b[i] = a[i] - a[i - 1];
update(i, b[i]);
}
build(1, n, 1);
while (m--) {
char ch = getchar();
while (ch != 'C' && ch != 'Q') ch = getchar();
if (ch == 'C') scanf("%lld%lld%lld", &l, &r, &num), update(l, num), update(r + 1, -num), modify(1, n, l, 1, num), modify(1, n, r + 1, 1, -num);
if (ch == 'Q') scanf("%lld%lld", &l, &r), printf("%lldn", gcd(query_tree(l), query(1, n, l + 1, r, 1)));
}
return 0;
}
最后
以上就是喜悦黑裤为你收集整理的CH4302-Interval GCD(线段树+树状数组+GCD)的全部内容,希望文章能够帮你解决CH4302-Interval GCD(线段树+树状数组+GCD)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复