我是靠谱客的博主 激动萝莉,最近开发中收集的这篇文章主要介绍教你如何用Docker快速搭建深度学习环境,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

本教程搭建集 Tensorflow、Keras、Coffe、PyTorch 等深度学习框架于一身的环境,及jupyter。

本教程使用nvidia-docker启动实例,通过本教程可以从一个全新的Ubuntu系统快速搭建出GPU深度学习环境。

 

一、安装依赖环境

1. 使用国内镜像加速安装

https://mirrors.tuna.tsinghua.edu.cn/help/ubuntu/
此处默认环境:ubuntu16.04LTS

sudo mv /etc/apt/sources.list /etc/apt/sources.list.old
sudo vim /etc/apt/sources.list

 

然后将下面的内容写入该文件:
需要注意的是:不同版本的ubuntu镜像源不一样,可以在清华镜像源查询

# 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ xenial main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ xenial main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ xenial-updates main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ xenial-updates main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ xenial-backports main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ xenial-backports main restricted universe multiverse
deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ xenial-security main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ xenial-security main restricted universe multiverse

# 预发布软件源,不建议启用
# deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ xenial-proposed main restricted universe multiverse
# deb-src https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ xenial-proposed main restricted universe multiverse
Tuna Mirrors

 

使镜像源生效

sudo apt-get update

 

2. 安装 NVIDIA GPU 驱动

sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-get install nvidia-384 nvidia-prime

 

查看是否安装成功

watch nvidia-smi # 该命令可查看GPU使用情况

 

3. 安装 Docker

https://mirrors.tuna.tsinghua.edu.cn/help/docker-ce/
以ubuntu16.04LTS为例

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository 
   "deb [arch=amd64] https://mirrors.tuna.tsinghua.edu.cn/docker-ce/linux/ubuntu 
   $(lsb_release -cs) 
   stable"
sudo apt-get update
sudo apt-get install docker-ce

 

查看是否安装成功

docker -v

 

将当前用户加入到docker用户组(这样在执行docker命令的时候就不会出现Permission Denied了)

sudo usermod -aG docker ${YOUR_NAME_HERE}

 

4. 安装 Nvidia-docker

https://github.com/NVIDIA/nvidia-docker

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | 
  sudo apt-key add -
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | 
  sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update

sudo apt-get install -y nvidia-docker2
sudo pkill -SIGHUP dockerd

 

这里的最后一步会重启docker,并载入nvidia-docker的配置
查看是否安装成功

nvidia-docker -v

 

二、拉取镜像并启动

1. 拉取镜像

这里我们使用了deepo镜像:https://hub.docker.com/r/ufoym/deepo/
其下的 ufoym/deepo:all-py36-jupyter,该镜像收集了大部分深度学习框架,运行在GPU环境,以及配有jupyter。

docker pull ufoym/deepo:all-py36-jupyter

 

2. 启动镜像

默认配置(不推荐)

nvidia-docker run -it -p 8888:8888 ufoym/deepo:all-py36-jupyter jupyter notebook --no-browser --ip=0.0.0.0 --allow-root --NotebookApp.token= --notebook-dir='/root'

 

外部挂载配置(挂载外部目录,方便移动数据,不推荐)

# 这里使用了-v选项用于挂载外部目录
nvidia-docker run -it -p 8888:8888 --ipc=host -v /data:/data ufoym/deepo:all-py36-jupyter jupyter notebook --no-browser --ip=0.0.0.0 --allow-root --NotebookApp.token= --notebook-dir='/data'

 

博主推荐:后台运行并挂载外部目录(需要注意的地方是要把参数-it改成-i,否则无法运行在后台)

nohup nvidia-docker run -i -p 8888:8888 --ipc=host -v /data:/data ufoym/deepo:all-jupyter-py36 jupyter notebook --no-browser --ip=0.0.0.0 --allow-root --NotebookApp.token= --notebook-dir='/data' &

 

参数说明

  • -v /data:/data:左边是外部路径,右边是内部路径,例如我的文件放在/home/ubuntu/data下,需要挂载到docker内部的路径是/data,则参数配置应该是-v /home/ubuntu/data:/data
  • --notebook-dir:jupyter工作目录的默认路径,推荐与上面的docker内部数据路径相同,即/data
  • -p 8888:8888:左边是外部端口,右边是docker镜像端口。如果想将jupyter应用挂载在8080端口,只需修改参数-p 8080:8888即可
  • --NotebookApp.token:进入jupyter的密码,这里设置的是空

 

三、 成功启动

 

四、其他

1. import tensorflow时遇到Future Warning解决方案

错误如下:

FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
  from ._conv import register_converters as _register_converters

 

解决方案:
进入jupyter terminal并输入

pip install --upgrade numpy
pip install --upgrade h5py

 

问题解决。

 

2. 进入docker shell,以便使用装有deeplearning环境的python交互式命令行

docker exec -it $(docker ps | awk '{print $1}' | sed -n '2p') bash

可以把这一段代码用alias链接后方便使用,在~/.profile下添加这一行:

alias pysh="docker exec -it $(docker ps | awk '{print $1}' | sed -n '2p') bash"

让配置生效

source ~/.profile

再次输入pysh就可以快速进入docker shell

转载于:https://www.cnblogs.com/bingmang/p/9813686.html

最后

以上就是激动萝莉为你收集整理的教你如何用Docker快速搭建深度学习环境的全部内容,希望文章能够帮你解决教你如何用Docker快速搭建深度学习环境所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(41)

评论列表共有 0 条评论

立即
投稿
返回
顶部