我是靠谱客的博主 瘦瘦方盒,最近开发中收集的这篇文章主要介绍JDK1.8 源码 java.lang.Integer类,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

前言

在上一章. 我们读了下java.lang.Object类. 在本章内, 我们读一下java.lang.Integer类.

众所周知, JDK有8种基本数据类型. 分别为 byte short int long float double. 还有2类非数字类, 分别为charboolean. 也就是说, 读了其中一种数值数据类型, 即读过其他5种数据类型. 所以, 我们今天读取Integer数据类型是绝对有意义的.


正文


(成员 & 方法) 概览

与Object类相似. 在细读源码之前, 我们先来看下类中读整体数据结构.

  • 成员变量
	# 数值
    private final int value;
    @Native public static final int SIZE = 32;
    public static final int BYTES = SIZE / Byte.SIZE;
	# 最小值
    @Native public static final int   MIN_VALUE = 0x80000000;
	# 最大值
    @Native public static final int   MAX_VALUE = 0x7fffffff;
    # 不知道啥意思
    @SuppressWarnings("unchecked")
    public static final Class<Integer>  TYPE = (Class<Integer>) Class.getPrimitiveClass("int");
        private final int value;
	# digits 进制数
    final static char[] digits = {
        '0' , '1' , '2' , '3' , '4' , '5' ,
        '6' , '7' , '8' , '9' , 'a' , 'b' ,
        'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,
        'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,
        'o' , 'p' , 'q' , 'r' , 's' , 't' ,
        'u' , 'v' , 'w' , 'x' , 'y' , 'z'
    };
   final static char [] DigitTens = {
        '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',
        '1', '1', '1', '1', '1', '1', '1', '1', '1', '1',
        '2', '2', '2', '2', '2', '2', '2', '2', '2', '2',
        '3', '3', '3', '3', '3', '3', '3', '3', '3', '3',
        '4', '4', '4', '4', '4', '4', '4', '4', '4', '4',
        '5', '5', '5', '5', '5', '5', '5', '5', '5', '5',
        '6', '6', '6', '6', '6', '6', '6', '6', '6', '6',
        '7', '7', '7', '7', '7', '7', '7', '7', '7', '7',
        '8', '8', '8', '8', '8', '8', '8', '8', '8', '8',
        '9', '9', '9', '9', '9', '9', '9', '9', '9', '9',
        } ;
        final static char [] DigitOnes = {
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        } ;
   # size Table 主要用于判断长度和位数. 辅助空间.     
    final static int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,
                                      99999999, 999999999, Integer.MAX_VALUE };
  • 主要方法
    • public Integer(int value) 构造方法
    • public Integer(String s) 构造方法
    • public static String toString(int i, int radix) 转换为字符串
    • public static int parseInt(String s, int radix) 进制转换
    • public static Integer valueOf(String s, int radix) 获取值(自动装箱)
    • public int intValue() 获取数值(自动拆箱)
    • public int hashCode() 获取hash值
    • public boolean equals(Object obj) equals 方法
    • public int compareTo(Integer anotherInteger) 比较方法
  • 次要方法 & instresting Method
    • public static int reverse(int i) 翻转-位运算
    • public static long toUnsignedLong(int x) 有符号数转换为无符号数

OK. 我们就跟着读一下这些主要方法.


相关基础

在看具体的成员和方法之前, 我们先看下Integer类的声明.

public final class Integer extends Number implements Comparable<Integer> {
  • 继承Number

  • 实现Comparable接口

# Number 抽象类
package java.lang;
public abstract class Number implements java.io.Serializable {
    public abstract int intValue();
    public abstract long longValue();
    public abstract float floatValue();
    public abstract double doubleValue();
    public byte byteValue() {
        return (byte)intValue();
    }
    public short shortValue() {
        return (short)intValue();
    }
    private static final long serialVersionUID = -8742448824652078965L;
}

可以看到Number类是一个抽象类. 其次, 其中实现的方法多数都是一些数值之间的转换. 比如Integer->(转)->Byte. 值得注意的是. 一般都是大数据类型转小数据类型.(虽然会造成数据丢失.)

# Comparable 接口
public interface Comparable<T> {
 public int compareTo(T o);
}

Comparable接口内主要是设置一个比较方法.


构造方法
  • public Integer(int value)
    public Integer(int value) {
    	# 直接赋值给value对象
        this.value = value;
    }
  • public Integer(String s)
    public Integer(String s) throws NumberFormatException {
    	# 字符串 转换为10进制数 具体的转换操作. 我们后面再做解析.
        this.value = parseInt(s, 10);
    }

(String -> Integer) 转换
  • public static int parseInt(String s, int radix)
 public static int parseInt(String s, int radix)
                throws NumberFormatException
    {
        /*
         * WARNING: This method may be invoked early during VM initialization
         * before IntegerCache is initialized. Care must be taken to not use
         * the valueOf method. 
         * (这里有一段注释, 说的是这个类需要在JVM虚拟机运行前左右一段时间进行加载. 因为valueOf()方法的使用. ValueOf方法是啥? 我们之后再看.)
         */

        if (s == null) {
            throw new NumberFormatException("null");
        }

        if (radix < Character.MIN_RADIX) {
        // Character.MIN_RADIX 是 2 / 即支持的最小转换为二进制
            throw new NumberFormatException("radix " + radix +
                                            " less than Character.MIN_RADIX");
        }

        if (radix > Character.MAX_RADIX) {
        // Character.MIN_RADIX 是 32 / 即支持的最大转换为32进制 
            throw new NumberFormatException("radix " + radix +
                                            " greater than Character.MAX_RADIX");
        }

        int result = 0;
        boolean negative = false;
        int i = 0, len = s.length();
        int limit = -Integer.MAX_VALUE;
        int multmin;
        int digit;

        if (len > 0) {
            char firstChar = s.charAt(0);
            // 先判断第一位 因为第一位一般是符号位
            if (firstChar < '0') { // Possible leading "+" or "-"
                if (firstChar == '-') {
                	// 确定是负数
                    negative = true;
                    limit = Integer.MIN_VALUE;
                } else if (firstChar != '+')
                    throw NumberFormatException.forInputString(s);

                if (len == 1) // Cannot have lone "+" or "-"
                    throw NumberFormatException.forInputString(s);
                i++;
            }
            // 更新 最小值 multmin
            multmin = limit / radix;
            while (i < len) {
                // Accumulating negatively avoids surprises near MAX_VALUE
                digit = Character.digit(s.charAt(i++),radix);
                if (digit < 0) {
                    throw NumberFormatException.forInputString(s);
                }
                if (result < multmin) {
                    throw NumberFormatException.forInputString(s);
                }
                result *= radix;
                if (result < limit + digit) {
                    throw NumberFormatException.forInputString(s);
                }
                # 骚操作?
                result -= digit;
            }
        } else {
        	// 输入的字符串为空 即 长度小于1
            throw NumberFormatException.forInputString(s);
        }
        return negative ? result : -result;
    }

值得注意的是, 这里有2个注意点:

  • Character.digit(s.charAt(i++),radix)
    判断你的字符是否在进制内, 在进制内返回数字本身. 否则返回-1.
    举个例子 (‘8’,10) 返回8 / (‘B’,10) 返回-1 ‘B’表示数字12.
    Character.digit()的意义

  • result -= digit;
    这段代码比较有意思? 我们对于一个数字123的转换大致为:1*10^2+2*10^1+3*10^0.
    但是这边确是使用负数进行计算. (-1)*10^2+(-2)*10^1+(-3)*10^0. 最后return negative ? result : -result;此处再做了一次判断.

难道是减法运算快?还是边界值的判定?
貌似就是和Integer的边界有关. 因为Integer的边界为 -21368 ----- +21367


(Integer -> String) 转换
  • public static String toString(int i)
public static String toString(int i) {
		// 边界值判断
        if (i == Integer.MIN_VALUE)
            return "-2147483648";
        // 判断位数. 如果是负数, 那么要加一位, 因为加`-`号
        int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
        // 给定一个Char数组
        char[] buf = new char[size];
        // getChars方法 将i 转换为char[]数组
        getChars(i, size, buf);
        // 通过Chars[] 创建一个 String 数组 (这个我们下一章再说)
        return new String(buf, true);
    }
  • static void getChars(int i, int index, char[] buf)
  static void getChars(int i, int index, char[] buf) {
        int q, r;
        int charPos = index;
        char sign = 0;

		// 如果i是负数. 那么转换为
        if (i < 0) {
            sign = '-';
            i = -i;
        }

		// 取后2位
        // Generate two digits per iteration
        while (i >= 65536) {
            q = i / 100;
        // really: r = i - (q * 100);
            r = i - ((q << 6) + (q << 5) + (q << 2));
            i = q;
            buf [--charPos] = DigitOnes[r];
            buf [--charPos] = DigitTens[r];
        }

        // Fall thru to fast mode for smaller numbers
        // assert(i <= 65536, i);
        for (;;) {
            q = (i * 52429) >>> (16+3);
            r = i - ((q << 3) + (q << 1));  // r = i-(q*10) ...
            buf [--charPos] = digits [r];
            i = q;
            if (i == 0) break;
        }
        // 符号为 负数 加上 `-`
        if (sign != 0) {
            buf [--charPos] = sign;
        }
    }
  • getChars() 方法的作用为:将 数字123转换为字符串 存储进char[] {'1','2','3'}.
  • 核心步骤1-去除65535后部分
        while (i >= 65536) {
            q = i / 100;
        // really: r = i - (q * 100);
            r = i - ((q << 6) + (q << 5) + (q << 2));
            i = q;
            buf [--charPos] = DigitOnes[r];
            buf [--charPos] = DigitTens[r];
        }

这段代码的含义是: 将比如65536123中的65536后的123几位放入名为buf[]char[]数组内. 其中有一个精妙的运算. r = i - ((q << 6) + (q << 5) + (q << 2)); 通过计算后面可以知道2^6+2^5+2^2=64+32+4=100. 是不是感觉很棒?

  • 核心步骤2- 处理65535内数字
 // assert(i <= 65536, i);
        for (;;) {
            q = (i * 52429) >>> (16+3);
            r = i - ((q << 3) + (q << 1));  // r = i-(q*10) ...
            buf [--charPos] = digits [r];
            i = q;
            if (i == 0) break;
        }

这段代码含义是, 先将newResult=数字/10, 随后num=result-newResult*10 大概是取模运算比这个更慢.等价算法num=result%10.
2^19=524288 52429/524288 这里我有2点疑问?

  • 直接写19即可 为啥要写3+16.
  • 52429/524288 是约等于, 对于算法的精度是否有影响?
    jdk源码:Integer.getChars(int i, int index, char[] buf)

ValueOf & intValue (自动装箱&自动拆箱)
  • public static Integer valueOf(int i) 自动装箱
    public static Integer valueOf(int i) {
        // low -128 high 127
        if (i >= IntegerCache.low && i <= IntegerCache.high)
            return IntegerCache.cache[i + (-IntegerCache.low)];
        return new Integer(i);
    }
  • public int intValue() 自动拆箱
    public int intValue() {
        return value;
    }
  • 自动装箱和自动拆箱原理
    JDK 1.5开始创建的一种语法糖. Ineger i = 4;/int a = i;
    上文是比较常见的装箱和拆箱.
Integer i2 = 4; -> 自动装箱 -> Integer i2=Integer.valueOf(4); 
见上文的方法可以知道. 其装箱的是IntegerCache内的数字.

int i3 = i2; -> 自动拆箱 -> i3=i2.intVal();
见上文可知, 其拆箱转变为了一个基础数据类型.

其实在使用的过程中, 拆箱操作产生的异常比较少. 但是装箱操作产生的异常就比较致命, 典型的就是==equals方法的区别.

public static void testEquals() {
       //1
       int a = 100;
       Integer b = 100;
       System.out.println(a == b);

       //2
       Integer c = 100;
       Integer d = 100;
       System.out.println(c == d);


       //3
       c = 200;
       d = 200;
       System.out.println(c == d);
       System.out.println(200 == d);
       System.out.println(d == 200);
   }
// 结果
true
true
false
true
true
  • 最终写法 Optional.of()
	public static void testEquals() {
		Integer i1 = 128;
		Integer i2 =128;
		// 错误示范
		System.out.println(i1 ==i2);
		// 会空指针
		System.out.println(i1.equals(i2));
		// 使用Optional工具类
		System.out.println(Optional.of(i1).equals(Optional.of(i2)));
		
	}

自动装箱和自动拆箱貌似和操作符号还有关系. 有时间应该深入了解下.


  • public boolean equals(Object obj)
   public boolean equals(Object obj) {
        if (obj instanceof Integer) {
            return value == ((Integer)obj).intValue();
        }
        return false;
    }

  • public int hashCode()
    public int hashCode() {
        return Integer.hashCode(value);
    }
      public static int hashCode(int value) {
        return value;
    }

  public int compareTo(Integer anotherInteger) {
        return compare(this.value, anotherInteger.value);
    }
  public static int compare(int x, int y) {
        return (x < y) ? -1 : ((x == y) ? 0 : 1);
    }

Q

Q1: 自动装箱子和自动拆箱是什么?可以介绍一下么?

Q2: equals() 方法和 == 方法的区别和联系?

Q3: Integer 作为函数参数. 到底是值传递还是地址传递?


总结

对于Integer类来说. 我们需要知道如下几点:

  • 内部维护的value成员变量final类型.
  • 类型转换.Integer -> String ( toString() )/ String -> Integer ( parseInt(str) )类型是如何转换的.
  • 自动装箱valueOf()和自动拆箱intValue(). 特别是对于某些计算过程的计算.
  • 继自动装箱和自动拆箱. 我们应该选择equals方法取代==方法. 因为==方法比较的是地址. 而非值本身.
  • 其他一些方法. hashcode()/equals() / compareTo.

Reference

[1]. JDK1.8源码(二)——java.lang.Integer 类
[2]. jdk源码:Integer.getChars(int i, int index, char[] buf)
[3]. Character.digit()的意义
[4]. 浅谈 Integer 类


附源码

/*
 * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.lang;

import java.lang.annotation.Native;

/**
 * The {@code Integer} class wraps a value of the primitive type
 * {@code int} in an object. An object of type {@code Integer}
 * contains a single field whose type is {@code int}.
 *
 * <p>In addition, this class provides several methods for converting
 * an {@code int} to a {@code String} and a {@code String} to an
 * {@code int}, as well as other constants and methods useful when
 * dealing with an {@code int}.
 *
 * <p>Implementation note: The implementations of the "bit twiddling"
 * methods (such as {@link #highestOneBit(int) highestOneBit} and
 * {@link #numberOfTrailingZeros(int) numberOfTrailingZeros}) are
 * based on material from Henry S. Warren, Jr.'s <i>Hacker's
 * Delight</i>, (Addison Wesley, 2002).
 *
 * @author  Lee Boynton
 * @author  Arthur van Hoff
 * @author  Josh Bloch
 * @author  Joseph D. Darcy
 * @since JDK1.0
 */
public final class Integer extends Number implements Comparable<Integer> {
    /**
     * A constant holding the minimum value an {@code int} can
     * have, -2<sup>31</sup>.
     */
    @Native public static final int   MIN_VALUE = 0x80000000;

    /**
     * A constant holding the maximum value an {@code int} can
     * have, 2<sup>31</sup>-1.
     */
    @Native public static final int   MAX_VALUE = 0x7fffffff;

    /**
     * The {@code Class} instance representing the primitive type
     * {@code int}.
     *
     * @since   JDK1.1
     */
    @SuppressWarnings("unchecked")
    public static final Class<Integer>  TYPE = (Class<Integer>) Class.getPrimitiveClass("int");

    /**
     * All possible chars for representing a number as a String
     */
    final static char[] digits = {
        '0' , '1' , '2' , '3' , '4' , '5' ,
        '6' , '7' , '8' , '9' , 'a' , 'b' ,
        'c' , 'd' , 'e' , 'f' , 'g' , 'h' ,
        'i' , 'j' , 'k' , 'l' , 'm' , 'n' ,
        'o' , 'p' , 'q' , 'r' , 's' , 't' ,
        'u' , 'v' , 'w' , 'x' , 'y' , 'z'
    };

    /**
     * Returns a string representation of the first argument in the
     * radix specified by the second argument.
     *
     * <p>If the radix is smaller than {@code Character.MIN_RADIX}
     * or larger than {@code Character.MAX_RADIX}, then the radix
     * {@code 10} is used instead.
     *
     * <p>If the first argument is negative, the first element of the
     * result is the ASCII minus character {@code '-'}
     * ({@code 'u005Cu002D'}). If the first argument is not
     * negative, no sign character appears in the result.
     *
     * <p>The remaining characters of the result represent the magnitude
     * of the first argument. If the magnitude is zero, it is
     * represented by a single zero character {@code '0'}
     * ({@code 'u005Cu0030'}); otherwise, the first character of
     * the representation of the magnitude will not be the zero
     * character.  The following ASCII characters are used as digits:
     *
     * <blockquote>
     *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
     * </blockquote>
     *
     * These are {@code 'u005Cu0030'} through
     * {@code 'u005Cu0039'} and {@code 'u005Cu0061'} through
     * {@code 'u005Cu007A'}. If {@code radix} is
     * <var>N</var>, then the first <var>N</var> of these characters
     * are used as radix-<var>N</var> digits in the order shown. Thus,
     * the digits for hexadecimal (radix 16) are
     * {@code 0123456789abcdef}. If uppercase letters are
     * desired, the {@link java.lang.String#toUpperCase()} method may
     * be called on the result:
     *
     * <blockquote>
     *  {@code Integer.toString(n, 16).toUpperCase()}
     * </blockquote>
     *
     * @param   i       an integer to be converted to a string.
     * @param   radix   the radix to use in the string representation.
     * @return  a string representation of the argument in the specified radix.
     * @see     java.lang.Character#MAX_RADIX
     * @see     java.lang.Character#MIN_RADIX
     */
    public static String toString(int i, int radix) {
        if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
            radix = 10;

        /* Use the faster version */
        if (radix == 10) {
            return toString(i);
        }

        char buf[] = new char[33];
        boolean negative = (i < 0);
        int charPos = 32;

        if (!negative) {
            i = -i;
        }

        while (i <= -radix) {
            buf[charPos--] = digits[-(i % radix)];
            i = i / radix;
        }
        buf[charPos] = digits[-i];

        if (negative) {
            buf[--charPos] = '-';
        }

        return new String(buf, charPos, (33 - charPos));
    }

    /**
     * Returns a string representation of the first argument as an
     * unsigned integer value in the radix specified by the second
     * argument.
     *
     * <p>If the radix is smaller than {@code Character.MIN_RADIX}
     * or larger than {@code Character.MAX_RADIX}, then the radix
     * {@code 10} is used instead.
     *
     * <p>Note that since the first argument is treated as an unsigned
     * value, no leading sign character is printed.
     *
     * <p>If the magnitude is zero, it is represented by a single zero
     * character {@code '0'} ({@code 'u005Cu0030'}); otherwise,
     * the first character of the representation of the magnitude will
     * not be the zero character.
     *
     * <p>The behavior of radixes and the characters used as digits
     * are the same as {@link #toString(int, int) toString}.
     *
     * @param   i       an integer to be converted to an unsigned string.
     * @param   radix   the radix to use in the string representation.
     * @return  an unsigned string representation of the argument in the specified radix.
     * @see     #toString(int, int)
     * @since 1.8
     */
    public static String toUnsignedString(int i, int radix) {
        return Long.toUnsignedString(toUnsignedLong(i), radix);
    }

    /**
     * Returns a string representation of the integer argument as an
     * unsigned integer in base&nbsp;16.
     *
     * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
     * if the argument is negative; otherwise, it is equal to the
     * argument.  This value is converted to a string of ASCII digits
     * in hexadecimal (base&nbsp;16) with no extra leading
     * {@code 0}s.
     *
     * <p>The value of the argument can be recovered from the returned
     * string {@code s} by calling {@link
     * Integer#parseUnsignedInt(String, int)
     * Integer.parseUnsignedInt(s, 16)}.
     *
     * <p>If the unsigned magnitude is zero, it is represented by a
     * single zero character {@code '0'} ({@code 'u005Cu0030'});
     * otherwise, the first character of the representation of the
     * unsigned magnitude will not be the zero character. The
     * following characters are used as hexadecimal digits:
     *
     * <blockquote>
     *  {@code 0123456789abcdef}
     * </blockquote>
     *
     * These are the characters {@code 'u005Cu0030'} through
     * {@code 'u005Cu0039'} and {@code 'u005Cu0061'} through
     * {@code 'u005Cu0066'}. If uppercase letters are
     * desired, the {@link java.lang.String#toUpperCase()} method may
     * be called on the result:
     *
     * <blockquote>
     *  {@code Integer.toHexString(n).toUpperCase()}
     * </blockquote>
     *
     * @param   i   an integer to be converted to a string.
     * @return  the string representation of the unsigned integer value
     *          represented by the argument in hexadecimal (base&nbsp;16).
     * @see #parseUnsignedInt(String, int)
     * @see #toUnsignedString(int, int)
     * @since   JDK1.0.2
     */
    public static String toHexString(int i) {
        return toUnsignedString0(i, 4);
    }

    /**
     * Returns a string representation of the integer argument as an
     * unsigned integer in base&nbsp;8.
     *
     * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
     * if the argument is negative; otherwise, it is equal to the
     * argument.  This value is converted to a string of ASCII digits
     * in octal (base&nbsp;8) with no extra leading {@code 0}s.
     *
     * <p>The value of the argument can be recovered from the returned
     * string {@code s} by calling {@link
     * Integer#parseUnsignedInt(String, int)
     * Integer.parseUnsignedInt(s, 8)}.
     *
     * <p>If the unsigned magnitude is zero, it is represented by a
     * single zero character {@code '0'} ({@code 'u005Cu0030'});
     * otherwise, the first character of the representation of the
     * unsigned magnitude will not be the zero character. The
     * following characters are used as octal digits:
     *
     * <blockquote>
     * {@code 01234567}
     * </blockquote>
     *
     * These are the characters {@code 'u005Cu0030'} through
     * {@code 'u005Cu0037'}.
     *
     * @param   i   an integer to be converted to a string.
     * @return  the string representation of the unsigned integer value
     *          represented by the argument in octal (base&nbsp;8).
     * @see #parseUnsignedInt(String, int)
     * @see #toUnsignedString(int, int)
     * @since   JDK1.0.2
     */
    public static String toOctalString(int i) {
        return toUnsignedString0(i, 3);
    }

    /**
     * Returns a string representation of the integer argument as an
     * unsigned integer in base&nbsp;2.
     *
     * <p>The unsigned integer value is the argument plus 2<sup>32</sup>
     * if the argument is negative; otherwise it is equal to the
     * argument.  This value is converted to a string of ASCII digits
     * in binary (base&nbsp;2) with no extra leading {@code 0}s.
     *
     * <p>The value of the argument can be recovered from the returned
     * string {@code s} by calling {@link
     * Integer#parseUnsignedInt(String, int)
     * Integer.parseUnsignedInt(s, 2)}.
     *
     * <p>If the unsigned magnitude is zero, it is represented by a
     * single zero character {@code '0'} ({@code 'u005Cu0030'});
     * otherwise, the first character of the representation of the
     * unsigned magnitude will not be the zero character. The
     * characters {@code '0'} ({@code 'u005Cu0030'}) and {@code
     * '1'} ({@code 'u005Cu0031'}) are used as binary digits.
     *
     * @param   i   an integer to be converted to a string.
     * @return  the string representation of the unsigned integer value
     *          represented by the argument in binary (base&nbsp;2).
     * @see #parseUnsignedInt(String, int)
     * @see #toUnsignedString(int, int)
     * @since   JDK1.0.2
     */
    public static String toBinaryString(int i) {
        return toUnsignedString0(i, 1);
    }

    /**
     * Convert the integer to an unsigned number.
     */
    private static String toUnsignedString0(int val, int shift) {
        // assert shift > 0 && shift <=5 : "Illegal shift value";
        int mag = Integer.SIZE - Integer.numberOfLeadingZeros(val);
        int chars = Math.max(((mag + (shift - 1)) / shift), 1);
        char[] buf = new char[chars];

        formatUnsignedInt(val, shift, buf, 0, chars);

        // Use special constructor which takes over "buf".
        return new String(buf, true);
    }

    /**
     * Format a long (treated as unsigned) into a character buffer.
     * @param val the unsigned int to format
     * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
     * @param buf the character buffer to write to
     * @param offset the offset in the destination buffer to start at
     * @param len the number of characters to write
     * @return the lowest character  location used
     */
     static int formatUnsignedInt(int val, int shift, char[] buf, int offset, int len) {
        int charPos = len;
        int radix = 1 << shift;
        int mask = radix - 1;
        do {
            buf[offset + --charPos] = Integer.digits[val & mask];
            val >>>= shift;
        } while (val != 0 && charPos > 0);

        return charPos;
    }

    final static char [] DigitTens = {
        '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',
        '1', '1', '1', '1', '1', '1', '1', '1', '1', '1',
        '2', '2', '2', '2', '2', '2', '2', '2', '2', '2',
        '3', '3', '3', '3', '3', '3', '3', '3', '3', '3',
        '4', '4', '4', '4', '4', '4', '4', '4', '4', '4',
        '5', '5', '5', '5', '5', '5', '5', '5', '5', '5',
        '6', '6', '6', '6', '6', '6', '6', '6', '6', '6',
        '7', '7', '7', '7', '7', '7', '7', '7', '7', '7',
        '8', '8', '8', '8', '8', '8', '8', '8', '8', '8',
        '9', '9', '9', '9', '9', '9', '9', '9', '9', '9',
        } ;

    final static char [] DigitOnes = {
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
        } ;

        // I use the "invariant division by multiplication" trick to
        // accelerate Integer.toString.  In particular we want to
        // avoid division by 10.
        //
        // The "trick" has roughly the same performance characteristics
        // as the "classic" Integer.toString code on a non-JIT VM.
        // The trick avoids .rem and .div calls but has a longer code
        // path and is thus dominated by dispatch overhead.  In the
        // JIT case the dispatch overhead doesn't exist and the
        // "trick" is considerably faster than the classic code.
        //
        // TODO-FIXME: convert (x * 52429) into the equiv shift-add
        // sequence.
        //
        // RE:  Division by Invariant Integers using Multiplication
        //      T Gralund, P Montgomery
        //      ACM PLDI 1994
        //

    /**
     * Returns a {@code String} object representing the
     * specified integer. The argument is converted to signed decimal
     * representation and returned as a string, exactly as if the
     * argument and radix 10 were given as arguments to the {@link
     * #toString(int, int)} method.
     *
     * @param   i   an integer to be converted.
     * @return  a string representation of the argument in base&nbsp;10.
     */
    public static String toString(int i) {
        if (i == Integer.MIN_VALUE)
            return "-2147483648";
        int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
        char[] buf = new char[size];
        getChars(i, size, buf);
        return new String(buf, true);
    }

    /**
     * Returns a string representation of the argument as an unsigned
     * decimal value.
     *
     * The argument is converted to unsigned decimal representation
     * and returned as a string exactly as if the argument and radix
     * 10 were given as arguments to the {@link #toUnsignedString(int,
     * int)} method.
     *
     * @param   i  an integer to be converted to an unsigned string.
     * @return  an unsigned string representation of the argument.
     * @see     #toUnsignedString(int, int)
     * @since 1.8
     */
    public static String toUnsignedString(int i) {
        return Long.toString(toUnsignedLong(i));
    }

    /**
     * Places characters representing the integer i into the
     * character array buf. The characters are placed into
     * the buffer backwards starting with the least significant
     * digit at the specified index (exclusive), and working
     * backwards from there.
     *
     * Will fail if i == Integer.MIN_VALUE
     */
    static void getChars(int i, int index, char[] buf) {
        int q, r;
        int charPos = index;
        char sign = 0;

        if (i < 0) {
            sign = '-';
            i = -i;
        }

        // Generate two digits per iteration
        while (i >= 65536) {
            q = i / 100;
        // really: r = i - (q * 100);
            r = i - ((q << 6) + (q << 5) + (q << 2));
            i = q;
            buf [--charPos] = DigitOnes[r];
            buf [--charPos] = DigitTens[r];
        }

        // Fall thru to fast mode for smaller numbers
        // assert(i <= 65536, i);
        for (;;) {
            q = (i * 52429) >>> (16+3);
            r = i - ((q << 3) + (q << 1));  // r = i-(q*10) ...
            buf [--charPos] = digits [r];
            i = q;
            if (i == 0) break;
        }
        if (sign != 0) {
            buf [--charPos] = sign;
        }
    }

    final static int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,
                                      99999999, 999999999, Integer.MAX_VALUE };

    // Requires positive x
    static int stringSize(int x) {
        for (int i=0; ; i++)
            if (x <= sizeTable[i])
                return i+1;
    }

    /**
     * Parses the string argument as a signed integer in the radix
     * specified by the second argument. The characters in the string
     * must all be digits of the specified radix (as determined by
     * whether {@link java.lang.Character#digit(char, int)} returns a
     * nonnegative value), except that the first character may be an
     * ASCII minus sign {@code '-'} ({@code 'u005Cu002D'}) to
     * indicate a negative value or an ASCII plus sign {@code '+'}
     * ({@code 'u005Cu002B'}) to indicate a positive value. The
     * resulting integer value is returned.
     *
     * <p>An exception of type {@code NumberFormatException} is
     * thrown if any of the following situations occurs:
     * <ul>
     * <li>The first argument is {@code null} or is a string of
     * length zero.
     *
     * <li>The radix is either smaller than
     * {@link java.lang.Character#MIN_RADIX} or
     * larger than {@link java.lang.Character#MAX_RADIX}.
     *
     * <li>Any character of the string is not a digit of the specified
     * radix, except that the first character may be a minus sign
     * {@code '-'} ({@code 'u005Cu002D'}) or plus sign
     * {@code '+'} ({@code 'u005Cu002B'}) provided that the
     * string is longer than length 1.
     *
     * <li>The value represented by the string is not a value of type
     * {@code int}.
     * </ul>
     *
     * <p>Examples:
     * <blockquote><pre>
     * parseInt("0", 10) returns 0
     * parseInt("473", 10) returns 473
     * parseInt("+42", 10) returns 42
     * parseInt("-0", 10) returns 0
     * parseInt("-FF", 16) returns -255
     * parseInt("1100110", 2) returns 102
     * parseInt("2147483647", 10) returns 2147483647
     * parseInt("-2147483648", 10) returns -2147483648
     * parseInt("2147483648", 10) throws a NumberFormatException
     * parseInt("99", 8) throws a NumberFormatException
     * parseInt("Kona", 10) throws a NumberFormatException
     * parseInt("Kona", 27) returns 411787
     * </pre></blockquote>
     *
     * @param      s   the {@code String} containing the integer
     *                  representation to be parsed
     * @param      radix   the radix to be used while parsing {@code s}.
     * @return     the integer represented by the string argument in the
     *             specified radix.
     * @exception  NumberFormatException if the {@code String}
     *             does not contain a parsable {@code int}.
     */
    public static int parseInt(String s, int radix)
                throws NumberFormatException
    {
        /*
         * WARNING: This method may be invoked early during VM initialization
         * before IntegerCache is initialized. Care must be taken to not use
         * the valueOf method.
         */

        if (s == null) {
            throw new NumberFormatException("null");
        }

        if (radix < Character.MIN_RADIX) {
            throw new NumberFormatException("radix " + radix +
                                            " less than Character.MIN_RADIX");
        }

        if (radix > Character.MAX_RADIX) {
            throw new NumberFormatException("radix " + radix +
                                            " greater than Character.MAX_RADIX");
        }

        int result = 0;
        boolean negative = false;
        int i = 0, len = s.length();
        int limit = -Integer.MAX_VALUE;
        int multmin;
        int digit;

        if (len > 0) {
            char firstChar = s.charAt(0);
            if (firstChar < '0') { // Possible leading "+" or "-"
                if (firstChar == '-') {
                    negative = true;
                    limit = Integer.MIN_VALUE;
                } else if (firstChar != '+')
                    throw NumberFormatException.forInputString(s);

                if (len == 1) // Cannot have lone "+" or "-"
                    throw NumberFormatException.forInputString(s);
                i++;
            }
            multmin = limit / radix;
            while (i < len) {
                // Accumulating negatively avoids surprises near MAX_VALUE
                digit = Character.digit(s.charAt(i++),radix);
                if (digit < 0) {
                    throw NumberFormatException.forInputString(s);
                }
                if (result < multmin) {
                    throw NumberFormatException.forInputString(s);
                }
                result *= radix;
                if (result < limit + digit) {
                    throw NumberFormatException.forInputString(s);
                }
                result -= digit;
            }
        } else {
            throw NumberFormatException.forInputString(s);
        }
        return negative ? result : -result;
    }

    /**
     * Parses the string argument as a signed decimal integer. The
     * characters in the string must all be decimal digits, except
     * that the first character may be an ASCII minus sign {@code '-'}
     * ({@code 'u005Cu002D'}) to indicate a negative value or an
     * ASCII plus sign {@code '+'} ({@code 'u005Cu002B'}) to
     * indicate a positive value. The resulting integer value is
     * returned, exactly as if the argument and the radix 10 were
     * given as arguments to the {@link #parseInt(java.lang.String,
     * int)} method.
     *
     * @param s    a {@code String} containing the {@code int}
     *             representation to be parsed
     * @return     the integer value represented by the argument in decimal.
     * @exception  NumberFormatException  if the string does not contain a
     *               parsable integer.
     */
    public static int parseInt(String s) throws NumberFormatException {
        return parseInt(s,10);
    }

    /**
     * Parses the string argument as an unsigned integer in the radix
     * specified by the second argument.  An unsigned integer maps the
     * values usually associated with negative numbers to positive
     * numbers larger than {@code MAX_VALUE}.
     *
     * The characters in the string must all be digits of the
     * specified radix (as determined by whether {@link
     * java.lang.Character#digit(char, int)} returns a nonnegative
     * value), except that the first character may be an ASCII plus
     * sign {@code '+'} ({@code 'u005Cu002B'}). The resulting
     * integer value is returned.
     *
     * <p>An exception of type {@code NumberFormatException} is
     * thrown if any of the following situations occurs:
     * <ul>
     * <li>The first argument is {@code null} or is a string of
     * length zero.
     *
     * <li>The radix is either smaller than
     * {@link java.lang.Character#MIN_RADIX} or
     * larger than {@link java.lang.Character#MAX_RADIX}.
     *
     * <li>Any character of the string is not a digit of the specified
     * radix, except that the first character may be a plus sign
     * {@code '+'} ({@code 'u005Cu002B'}) provided that the
     * string is longer than length 1.
     *
     * <li>The value represented by the string is larger than the
     * largest unsigned {@code int}, 2<sup>32</sup>-1.
     *
     * </ul>
     *
     *
     * @param      s   the {@code String} containing the unsigned integer
     *                  representation to be parsed
     * @param      radix   the radix to be used while parsing {@code s}.
     * @return     the integer represented by the string argument in the
     *             specified radix.
     * @throws     NumberFormatException if the {@code String}
     *             does not contain a parsable {@code int}.
     * @since 1.8
     */
    public static int parseUnsignedInt(String s, int radix)
                throws NumberFormatException {
        if (s == null)  {
            throw new NumberFormatException("null");
        }

        int len = s.length();
        if (len > 0) {
            char firstChar = s.charAt(0);
            if (firstChar == '-') {
                throw new
                    NumberFormatException(String.format("Illegal leading minus sign " +
                                                       "on unsigned string %s.", s));
            } else {
                if (len <= 5 || // Integer.MAX_VALUE in Character.MAX_RADIX is 6 digits
                    (radix == 10 && len <= 9) ) { // Integer.MAX_VALUE in base 10 is 10 digits
                    return parseInt(s, radix);
                } else {
                    long ell = Long.parseLong(s, radix);
                    if ((ell & 0xffff_ffff_0000_0000L) == 0) {
                        return (int) ell;
                    } else {
                        throw new
                            NumberFormatException(String.format("String value %s exceeds " +
                                                                "range of unsigned int.", s));
                    }
                }
            }
        } else {
            throw NumberFormatException.forInputString(s);
        }
    }

    /**
     * Parses the string argument as an unsigned decimal integer. The
     * characters in the string must all be decimal digits, except
     * that the first character may be an an ASCII plus sign {@code
     * '+'} ({@code 'u005Cu002B'}). The resulting integer value
     * is returned, exactly as if the argument and the radix 10 were
     * given as arguments to the {@link
     * #parseUnsignedInt(java.lang.String, int)} method.
     *
     * @param s   a {@code String} containing the unsigned {@code int}
     *            representation to be parsed
     * @return    the unsigned integer value represented by the argument in decimal.
     * @throws    NumberFormatException  if the string does not contain a
     *            parsable unsigned integer.
     * @since 1.8
     */
    public static int parseUnsignedInt(String s) throws NumberFormatException {
        return parseUnsignedInt(s, 10);
    }

    /**
     * Returns an {@code Integer} object holding the value
     * extracted from the specified {@code String} when parsed
     * with the radix given by the second argument. The first argument
     * is interpreted as representing a signed integer in the radix
     * specified by the second argument, exactly as if the arguments
     * were given to the {@link #parseInt(java.lang.String, int)}
     * method. The result is an {@code Integer} object that
     * represents the integer value specified by the string.
     *
     * <p>In other words, this method returns an {@code Integer}
     * object equal to the value of:
     *
     * <blockquote>
     *  {@code new Integer(Integer.parseInt(s, radix))}
     * </blockquote>
     *
     * @param      s   the string to be parsed.
     * @param      radix the radix to be used in interpreting {@code s}
     * @return     an {@code Integer} object holding the value
     *             represented by the string argument in the specified
     *             radix.
     * @exception NumberFormatException if the {@code String}
     *            does not contain a parsable {@code int}.
     */
    public static Integer valueOf(String s, int radix) throws NumberFormatException {
        return Integer.valueOf(parseInt(s,radix));
    }

    /**
     * Returns an {@code Integer} object holding the
     * value of the specified {@code String}. The argument is
     * interpreted as representing a signed decimal integer, exactly
     * as if the argument were given to the {@link
     * #parseInt(java.lang.String)} method. The result is an
     * {@code Integer} object that represents the integer value
     * specified by the string.
     *
     * <p>In other words, this method returns an {@code Integer}
     * object equal to the value of:
     *
     * <blockquote>
     *  {@code new Integer(Integer.parseInt(s))}
     * </blockquote>
     *
     * @param      s   the string to be parsed.
     * @return     an {@code Integer} object holding the value
     *             represented by the string argument.
     * @exception  NumberFormatException  if the string cannot be parsed
     *             as an integer.
     */
    public static Integer valueOf(String s) throws NumberFormatException {
        return Integer.valueOf(parseInt(s, 10));
    }

    /**
     * Cache to support the object identity semantics of autoboxing for values between
     * -128 and 127 (inclusive) as required by JLS.
     *
     * The cache is initialized on first usage.  The size of the cache
     * may be controlled by the {@code -XX:AutoBoxCacheMax=<size>} option.
     * During VM initialization, java.lang.Integer.IntegerCache.high property
     * may be set and saved in the private system properties in the
     * sun.misc.VM class.
     */

    private static class IntegerCache {
        static final int low = -128;
        static final int high;
        static final Integer cache[];

        static {
            // high value may be configured by property
            int h = 127;
            String integerCacheHighPropValue =
                sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
            if (integerCacheHighPropValue != null) {
                try {
                    int i = parseInt(integerCacheHighPropValue);
                    i = Math.max(i, 127);
                    // Maximum array size is Integer.MAX_VALUE
                    h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
                } catch( NumberFormatException nfe) {
                    // If the property cannot be parsed into an int, ignore it.
                }
            }
            high = h;

            cache = new Integer[(high - low) + 1];
            int j = low;
            for(int k = 0; k < cache.length; k++)
                cache[k] = new Integer(j++);

            // range [-128, 127] must be interned (JLS7 5.1.7)
            assert IntegerCache.high >= 127;
        }

        private IntegerCache() {}
    }

    /**
     * Returns an {@code Integer} instance representing the specified
     * {@code int} value.  If a new {@code Integer} instance is not
     * required, this method should generally be used in preference to
     * the constructor {@link #Integer(int)}, as this method is likely
     * to yield significantly better space and time performance by
     * caching frequently requested values.
     *
     * This method will always cache values in the range -128 to 127,
     * inclusive, and may cache other values outside of this range.
     *
     * @param  i an {@code int} value.
     * @return an {@code Integer} instance representing {@code i}.
     * @since  1.5
     */
    public static Integer valueOf(int i) {
        if (i >= IntegerCache.low && i <= IntegerCache.high)
            return IntegerCache.cache[i + (-IntegerCache.low)];
        return new Integer(i);
    }

    /**
     * The value of the {@code Integer}.
     *
     * @serial
     */
    private final int value;

    /**
     * Constructs a newly allocated {@code Integer} object that
     * represents the specified {@code int} value.
     *
     * @param   value   the value to be represented by the
     *                  {@code Integer} object.
     */
    public Integer(int value) {
        this.value = value;
    }

    /**
     * Constructs a newly allocated {@code Integer} object that
     * represents the {@code int} value indicated by the
     * {@code String} parameter. The string is converted to an
     * {@code int} value in exactly the manner used by the
     * {@code parseInt} method for radix 10.
     *
     * @param      s   the {@code String} to be converted to an
     *                 {@code Integer}.
     * @exception  NumberFormatException  if the {@code String} does not
     *               contain a parsable integer.
     * @see        java.lang.Integer#parseInt(java.lang.String, int)
     */
    public Integer(String s) throws NumberFormatException {
        this.value = parseInt(s, 10);
    }

    /**
     * Returns the value of this {@code Integer} as a {@code byte}
     * after a narrowing primitive conversion.
     * @jls 5.1.3 Narrowing Primitive Conversions
     */
    public byte byteValue() {
        return (byte)value;
    }

    /**
     * Returns the value of this {@code Integer} as a {@code short}
     * after a narrowing primitive conversion.
     * @jls 5.1.3 Narrowing Primitive Conversions
     */
    public short shortValue() {
        return (short)value;
    }

    /**
     * Returns the value of this {@code Integer} as an
     * {@code int}.
     */
    public int intValue() {
        return value;
    }

    /**
     * Returns the value of this {@code Integer} as a {@code long}
     * after a widening primitive conversion.
     * @jls 5.1.2 Widening Primitive Conversions
     * @see Integer#toUnsignedLong(int)
     */
    public long longValue() {
        return (long)value;
    }

    /**
     * Returns the value of this {@code Integer} as a {@code float}
     * after a widening primitive conversion.
     * @jls 5.1.2 Widening Primitive Conversions
     */
    public float floatValue() {
        return (float)value;
    }

    /**
     * Returns the value of this {@code Integer} as a {@code double}
     * after a widening primitive conversion.
     * @jls 5.1.2 Widening Primitive Conversions
     */
    public double doubleValue() {
        return (double)value;
    }

    /**
     * Returns a {@code String} object representing this
     * {@code Integer}'s value. The value is converted to signed
     * decimal representation and returned as a string, exactly as if
     * the integer value were given as an argument to the {@link
     * java.lang.Integer#toString(int)} method.
     *
     * @return  a string representation of the value of this object in
     *          base&nbsp;10.
     */
    public String toString() {
        return toString(value);
    }

    /**
     * Returns a hash code for this {@code Integer}.
     *
     * @return  a hash code value for this object, equal to the
     *          primitive {@code int} value represented by this
     *          {@code Integer} object.
     */
    @Override
    public int hashCode() {
        return Integer.hashCode(value);
    }

    /**
     * Returns a hash code for a {@code int} value; compatible with
     * {@code Integer.hashCode()}.
     *
     * @param value the value to hash
     * @since 1.8
     *
     * @return a hash code value for a {@code int} value.
     */
    public static int hashCode(int value) {
        return value;
    }

    /**
     * Compares this object to the specified object.  The result is
     * {@code true} if and only if the argument is not
     * {@code null} and is an {@code Integer} object that
     * contains the same {@code int} value as this object.
     *
     * @param   obj   the object to compare with.
     * @return  {@code true} if the objects are the same;
     *          {@code false} otherwise.
     */
    public boolean equals(Object obj) {
        if (obj instanceof Integer) {
            return value == ((Integer)obj).intValue();
        }
        return false;
    }

    /**
     * Determines the integer value of the system property with the
     * specified name.
     *
     * <p>The first argument is treated as the name of a system
     * property.  System properties are accessible through the {@link
     * java.lang.System#getProperty(java.lang.String)} method. The
     * string value of this property is then interpreted as an integer
     * value using the grammar supported by {@link Integer#decode decode} and
     * an {@code Integer} object representing this value is returned.
     *
     * <p>If there is no property with the specified name, if the
     * specified name is empty or {@code null}, or if the property
     * does not have the correct numeric format, then {@code null} is
     * returned.
     *
     * <p>In other words, this method returns an {@code Integer}
     * object equal to the value of:
     *
     * <blockquote>
     *  {@code getInteger(nm, null)}
     * </blockquote>
     *
     * @param   nm   property name.
     * @return  the {@code Integer} value of the property.
     * @throws  SecurityException for the same reasons as
     *          {@link System#getProperty(String) System.getProperty}
     * @see     java.lang.System#getProperty(java.lang.String)
     * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
     */
    public static Integer getInteger(String nm) {
        return getInteger(nm, null);
    }

    /**
     * Determines the integer value of the system property with the
     * specified name.
     *
     * <p>The first argument is treated as the name of a system
     * property.  System properties are accessible through the {@link
     * java.lang.System#getProperty(java.lang.String)} method. The
     * string value of this property is then interpreted as an integer
     * value using the grammar supported by {@link Integer#decode decode} and
     * an {@code Integer} object representing this value is returned.
     *
     * <p>The second argument is the default value. An {@code Integer} object
     * that represents the value of the second argument is returned if there
     * is no property of the specified name, if the property does not have
     * the correct numeric format, or if the specified name is empty or
     * {@code null}.
     *
     * <p>In other words, this method returns an {@code Integer} object
     * equal to the value of:
     *
     * <blockquote>
     *  {@code getInteger(nm, new Integer(val))}
     * </blockquote>
     *
     * but in practice it may be implemented in a manner such as:
     *
     * <blockquote><pre>
     * Integer result = getInteger(nm, null);
     * return (result == null) ? new Integer(val) : result;
     * </pre></blockquote>
     *
     * to avoid the unnecessary allocation of an {@code Integer}
     * object when the default value is not needed.
     *
     * @param   nm   property name.
     * @param   val   default value.
     * @return  the {@code Integer} value of the property.
     * @throws  SecurityException for the same reasons as
     *          {@link System#getProperty(String) System.getProperty}
     * @see     java.lang.System#getProperty(java.lang.String)
     * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
     */
    public static Integer getInteger(String nm, int val) {
        Integer result = getInteger(nm, null);
        return (result == null) ? Integer.valueOf(val) : result;
    }

    /**
     * Returns the integer value of the system property with the
     * specified name.  The first argument is treated as the name of a
     * system property.  System properties are accessible through the
     * {@link java.lang.System#getProperty(java.lang.String)} method.
     * The string value of this property is then interpreted as an
     * integer value, as per the {@link Integer#decode decode} method,
     * and an {@code Integer} object representing this value is
     * returned; in summary:
     *
     * <ul><li>If the property value begins with the two ASCII characters
     *         {@code 0x} or the ASCII character {@code #}, not
     *      followed by a minus sign, then the rest of it is parsed as a
     *      hexadecimal integer exactly as by the method
     *      {@link #valueOf(java.lang.String, int)} with radix 16.
     * <li>If the property value begins with the ASCII character
     *     {@code 0} followed by another character, it is parsed as an
     *     octal integer exactly as by the method
     *     {@link #valueOf(java.lang.String, int)} with radix 8.
     * <li>Otherwise, the property value is parsed as a decimal integer
     * exactly as by the method {@link #valueOf(java.lang.String, int)}
     * with radix 10.
     * </ul>
     *
     * <p>The second argument is the default value. The default value is
     * returned if there is no property of the specified name, if the
     * property does not have the correct numeric format, or if the
     * specified name is empty or {@code null}.
     *
     * @param   nm   property name.
     * @param   val   default value.
     * @return  the {@code Integer} value of the property.
     * @throws  SecurityException for the same reasons as
     *          {@link System#getProperty(String) System.getProperty}
     * @see     System#getProperty(java.lang.String)
     * @see     System#getProperty(java.lang.String, java.lang.String)
     */
    public static Integer getInteger(String nm, Integer val) {
        String v = null;
        try {
            v = System.getProperty(nm);
        } catch (IllegalArgumentException | NullPointerException e) {
        }
        if (v != null) {
            try {
                return Integer.decode(v);
            } catch (NumberFormatException e) {
            }
        }
        return val;
    }

    /**
     * Decodes a {@code String} into an {@code Integer}.
     * Accepts decimal, hexadecimal, and octal numbers given
     * by the following grammar:
     *
     * <blockquote>
     * <dl>
     * <dt><i>DecodableString:</i>
     * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
     * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
     * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
     * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
     * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
     *
     * <dt><i>Sign:</i>
     * <dd>{@code -}
     * <dd>{@code +}
     * </dl>
     * </blockquote>
     *
     * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
     * are as defined in section 3.10.1 of
     * <cite>The Java&trade; Language Specification</cite>,
     * except that underscores are not accepted between digits.
     *
     * <p>The sequence of characters following an optional
     * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
     * "{@code #}", or leading zero) is parsed as by the {@code
     * Integer.parseInt} method with the indicated radix (10, 16, or
     * 8).  This sequence of characters must represent a positive
     * value or a {@link NumberFormatException} will be thrown.  The
     * result is negated if first character of the specified {@code
     * String} is the minus sign.  No whitespace characters are
     * permitted in the {@code String}.
     *
     * @param     nm the {@code String} to decode.
     * @return    an {@code Integer} object holding the {@code int}
     *             value represented by {@code nm}
     * @exception NumberFormatException  if the {@code String} does not
     *            contain a parsable integer.
     * @see java.lang.Integer#parseInt(java.lang.String, int)
     */
    public static Integer decode(String nm) throws NumberFormatException {
        int radix = 10;
        int index = 0;
        boolean negative = false;
        Integer result;

        if (nm.length() == 0)
            throw new NumberFormatException("Zero length string");
        char firstChar = nm.charAt(0);
        // Handle sign, if present
        if (firstChar == '-') {
            negative = true;
            index++;
        } else if (firstChar == '+')
            index++;

        // Handle radix specifier, if present
        if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
            index += 2;
            radix = 16;
        }
        else if (nm.startsWith("#", index)) {
            index ++;
            radix = 16;
        }
        else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
            index ++;
            radix = 8;
        }

        if (nm.startsWith("-", index) || nm.startsWith("+", index))
            throw new NumberFormatException("Sign character in wrong position");

        try {
            result = Integer.valueOf(nm.substring(index), radix);
            result = negative ? Integer.valueOf(-result.intValue()) : result;
        } catch (NumberFormatException e) {
            // If number is Integer.MIN_VALUE, we'll end up here. The next line
            // handles this case, and causes any genuine format error to be
            // rethrown.
            String constant = negative ? ("-" + nm.substring(index))
                                       : nm.substring(index);
            result = Integer.valueOf(constant, radix);
        }
        return result;
    }

    /**
     * Compares two {@code Integer} objects numerically.
     *
     * @param   anotherInteger   the {@code Integer} to be compared.
     * @return  the value {@code 0} if this {@code Integer} is
     *          equal to the argument {@code Integer}; a value less than
     *          {@code 0} if this {@code Integer} is numerically less
     *          than the argument {@code Integer}; and a value greater
     *          than {@code 0} if this {@code Integer} is numerically
     *           greater than the argument {@code Integer} (signed
     *           comparison).
     * @since   1.2
     */
    public int compareTo(Integer anotherInteger) {
        return compare(this.value, anotherInteger.value);
    }

    /**
     * Compares two {@code int} values numerically.
     * The value returned is identical to what would be returned by:
     * <pre>
     *    Integer.valueOf(x).compareTo(Integer.valueOf(y))
     * </pre>
     *
     * @param  x the first {@code int} to compare
     * @param  y the second {@code int} to compare
     * @return the value {@code 0} if {@code x == y};
     *         a value less than {@code 0} if {@code x < y}; and
     *         a value greater than {@code 0} if {@code x > y}
     * @since 1.7
     */
    public static int compare(int x, int y) {
        return (x < y) ? -1 : ((x == y) ? 0 : 1);
    }

    /**
     * Compares two {@code int} values numerically treating the values
     * as unsigned.
     *
     * @param  x the first {@code int} to compare
     * @param  y the second {@code int} to compare
     * @return the value {@code 0} if {@code x == y}; a value less
     *         than {@code 0} if {@code x < y} as unsigned values; and
     *         a value greater than {@code 0} if {@code x > y} as
     *         unsigned values
     * @since 1.8
     */
    public static int compareUnsigned(int x, int y) {
        return compare(x + MIN_VALUE, y + MIN_VALUE);
    }

    /**
     * Converts the argument to a {@code long} by an unsigned
     * conversion.  In an unsigned conversion to a {@code long}, the
     * high-order 32 bits of the {@code long} are zero and the
     * low-order 32 bits are equal to the bits of the integer
     * argument.
     *
     * Consequently, zero and positive {@code int} values are mapped
     * to a numerically equal {@code long} value and negative {@code
     * int} values are mapped to a {@code long} value equal to the
     * input plus 2<sup>32</sup>.
     *
     * @param  x the value to convert to an unsigned {@code long}
     * @return the argument converted to {@code long} by an unsigned
     *         conversion
     * @since 1.8
     */
    public static long toUnsignedLong(int x) {
        return ((long) x) & 0xffffffffL;
    }

    /**
     * Returns the unsigned quotient of dividing the first argument by
     * the second where each argument and the result is interpreted as
     * an unsigned value.
     *
     * <p>Note that in two's complement arithmetic, the three other
     * basic arithmetic operations of add, subtract, and multiply are
     * bit-wise identical if the two operands are regarded as both
     * being signed or both being unsigned.  Therefore separate {@code
     * addUnsigned}, etc. methods are not provided.
     *
     * @param dividend the value to be divided
     * @param divisor the value doing the dividing
     * @return the unsigned quotient of the first argument divided by
     * the second argument
     * @see #remainderUnsigned
     * @since 1.8
     */
    public static int divideUnsigned(int dividend, int divisor) {
        // In lieu of tricky code, for now just use long arithmetic.
        return (int)(toUnsignedLong(dividend) / toUnsignedLong(divisor));
    }

    /**
     * Returns the unsigned remainder from dividing the first argument
     * by the second where each argument and the result is interpreted
     * as an unsigned value.
     *
     * @param dividend the value to be divided
     * @param divisor the value doing the dividing
     * @return the unsigned remainder of the first argument divided by
     * the second argument
     * @see #divideUnsigned
     * @since 1.8
     */
    public static int remainderUnsigned(int dividend, int divisor) {
        // In lieu of tricky code, for now just use long arithmetic.
        return (int)(toUnsignedLong(dividend) % toUnsignedLong(divisor));
    }


    // Bit twiddling

    /**
     * The number of bits used to represent an {@code int} value in two's
     * complement binary form.
     *
     * @since 1.5
     */
    @Native public static final int SIZE = 32;

    /**
     * The number of bytes used to represent a {@code int} value in two's
     * complement binary form.
     *
     * @since 1.8
     */
    public static final int BYTES = SIZE / Byte.SIZE;

    /**
     * Returns an {@code int} value with at most a single one-bit, in the
     * position of the highest-order ("leftmost") one-bit in the specified
     * {@code int} value.  Returns zero if the specified value has no
     * one-bits in its two's complement binary representation, that is, if it
     * is equal to zero.
     *
     * @param i the value whose highest one bit is to be computed
     * @return an {@code int} value with a single one-bit, in the position
     *     of the highest-order one-bit in the specified value, or zero if
     *     the specified value is itself equal to zero.
     * @since 1.5
     */
    public static int highestOneBit(int i) {
        // HD, Figure 3-1
        i |= (i >>  1);
        i |= (i >>  2);
        i |= (i >>  4);
        i |= (i >>  8);
        i |= (i >> 16);
        return i - (i >>> 1);
    }

    /**
     * Returns an {@code int} value with at most a single one-bit, in the
     * position of the lowest-order ("rightmost") one-bit in the specified
     * {@code int} value.  Returns zero if the specified value has no
     * one-bits in its two's complement binary representation, that is, if it
     * is equal to zero.
     *
     * @param i the value whose lowest one bit is to be computed
     * @return an {@code int} value with a single one-bit, in the position
     *     of the lowest-order one-bit in the specified value, or zero if
     *     the specified value is itself equal to zero.
     * @since 1.5
     */
    public static int lowestOneBit(int i) {
        // HD, Section 2-1
        return i & -i;
    }

    /**
     * Returns the number of zero bits preceding the highest-order
     * ("leftmost") one-bit in the two's complement binary representation
     * of the specified {@code int} value.  Returns 32 if the
     * specified value has no one-bits in its two's complement representation,
     * in other words if it is equal to zero.
     *
     * <p>Note that this method is closely related to the logarithm base 2.
     * For all positive {@code int} values x:
     * <ul>
     * <li>floor(log<sub>2</sub>(x)) = {@code 31 - numberOfLeadingZeros(x)}
     * <li>ceil(log<sub>2</sub>(x)) = {@code 32 - numberOfLeadingZeros(x - 1)}
     * </ul>
     *
     * @param i the value whose number of leading zeros is to be computed
     * @return the number of zero bits preceding the highest-order
     *     ("leftmost") one-bit in the two's complement binary representation
     *     of the specified {@code int} value, or 32 if the value
     *     is equal to zero.
     * @since 1.5
     */
    public static int numberOfLeadingZeros(int i) {
        // HD, Figure 5-6
        if (i == 0)
            return 32;
        int n = 1;
        if (i >>> 16 == 0) { n += 16; i <<= 16; }
        if (i >>> 24 == 0) { n +=  8; i <<=  8; }
        if (i >>> 28 == 0) { n +=  4; i <<=  4; }
        if (i >>> 30 == 0) { n +=  2; i <<=  2; }
        n -= i >>> 31;
        return n;
    }

    /**
     * Returns the number of zero bits following the lowest-order ("rightmost")
     * one-bit in the two's complement binary representation of the specified
     * {@code int} value.  Returns 32 if the specified value has no
     * one-bits in its two's complement representation, in other words if it is
     * equal to zero.
     *
     * @param i the value whose number of trailing zeros is to be computed
     * @return the number of zero bits following the lowest-order ("rightmost")
     *     one-bit in the two's complement binary representation of the
     *     specified {@code int} value, or 32 if the value is equal
     *     to zero.
     * @since 1.5
     */
    public static int numberOfTrailingZeros(int i) {
        // HD, Figure 5-14
        int y;
        if (i == 0) return 32;
        int n = 31;
        y = i <<16; if (y != 0) { n = n -16; i = y; }
        y = i << 8; if (y != 0) { n = n - 8; i = y; }
        y = i << 4; if (y != 0) { n = n - 4; i = y; }
        y = i << 2; if (y != 0) { n = n - 2; i = y; }
        return n - ((i << 1) >>> 31);
    }

    /**
     * Returns the number of one-bits in the two's complement binary
     * representation of the specified {@code int} value.  This function is
     * sometimes referred to as the <i>population count</i>.
     *
     * @param i the value whose bits are to be counted
     * @return the number of one-bits in the two's complement binary
     *     representation of the specified {@code int} value.
     * @since 1.5
     */
    public static int bitCount(int i) {
        // HD, Figure 5-2
        i = i - ((i >>> 1) & 0x55555555);
        i = (i & 0x33333333) + ((i >>> 2) & 0x33333333);
        i = (i + (i >>> 4)) & 0x0f0f0f0f;
        i = i + (i >>> 8);
        i = i + (i >>> 16);
        return i & 0x3f;
    }

    /**
     * Returns the value obtained by rotating the two's complement binary
     * representation of the specified {@code int} value left by the
     * specified number of bits.  (Bits shifted out of the left hand, or
     * high-order, side reenter on the right, or low-order.)
     *
     * <p>Note that left rotation with a negative distance is equivalent to
     * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
     * distance)}.  Note also that rotation by any multiple of 32 is a
     * no-op, so all but the last five bits of the rotation distance can be
     * ignored, even if the distance is negative: {@code rotateLeft(val,
     * distance) == rotateLeft(val, distance & 0x1F)}.
     *
     * @param i the value whose bits are to be rotated left
     * @param distance the number of bit positions to rotate left
     * @return the value obtained by rotating the two's complement binary
     *     representation of the specified {@code int} value left by the
     *     specified number of bits.
     * @since 1.5
     */
    public static int rotateLeft(int i, int distance) {
        return (i << distance) | (i >>> -distance);
    }

    /**
     * Returns the value obtained by rotating the two's complement binary
     * representation of the specified {@code int} value right by the
     * specified number of bits.  (Bits shifted out of the right hand, or
     * low-order, side reenter on the left, or high-order.)
     *
     * <p>Note that right rotation with a negative distance is equivalent to
     * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
     * distance)}.  Note also that rotation by any multiple of 32 is a
     * no-op, so all but the last five bits of the rotation distance can be
     * ignored, even if the distance is negative: {@code rotateRight(val,
     * distance) == rotateRight(val, distance & 0x1F)}.
     *
     * @param i the value whose bits are to be rotated right
     * @param distance the number of bit positions to rotate right
     * @return the value obtained by rotating the two's complement binary
     *     representation of the specified {@code int} value right by the
     *     specified number of bits.
     * @since 1.5
     */
    public static int rotateRight(int i, int distance) {
        return (i >>> distance) | (i << -distance);
    }

    /**
     * Returns the value obtained by reversing the order of the bits in the
     * two's complement binary representation of the specified {@code int}
     * value.
     *
     * @param i the value to be reversed
     * @return the value obtained by reversing order of the bits in the
     *     specified {@code int} value.
     * @since 1.5
     */
    public static int reverse(int i) {
        // HD, Figure 7-1
        i = (i & 0x55555555) << 1 | (i >>> 1) & 0x55555555;
        i = (i & 0x33333333) << 2 | (i >>> 2) & 0x33333333;
        i = (i & 0x0f0f0f0f) << 4 | (i >>> 4) & 0x0f0f0f0f;
        i = (i << 24) | ((i & 0xff00) << 8) |
            ((i >>> 8) & 0xff00) | (i >>> 24);
        return i;
    }

    /**
     * Returns the signum function of the specified {@code int} value.  (The
     * return value is -1 if the specified value is negative; 0 if the
     * specified value is zero; and 1 if the specified value is positive.)
     *
     * @param i the value whose signum is to be computed
     * @return the signum function of the specified {@code int} value.
     * @since 1.5
     */
    public static int signum(int i) {
        // HD, Section 2-7
        return (i >> 31) | (-i >>> 31);
    }

    /**
     * Returns the value obtained by reversing the order of the bytes in the
     * two's complement representation of the specified {@code int} value.
     *
     * @param i the value whose bytes are to be reversed
     * @return the value obtained by reversing the bytes in the specified
     *     {@code int} value.
     * @since 1.5
     */
    public static int reverseBytes(int i) {
        return ((i >>> 24)           ) |
               ((i >>   8) &   0xFF00) |
               ((i <<   8) & 0xFF0000) |
               ((i << 24));
    }

    /**
     * Adds two integers together as per the + operator.
     *
     * @param a the first operand
     * @param b the second operand
     * @return the sum of {@code a} and {@code b}
     * @see java.util.function.BinaryOperator
     * @since 1.8
     */
    public static int sum(int a, int b) {
        return a + b;
    }

    /**
     * Returns the greater of two {@code int} values
     * as if by calling {@link Math#max(int, int) Math.max}.
     *
     * @param a the first operand
     * @param b the second operand
     * @return the greater of {@code a} and {@code b}
     * @see java.util.function.BinaryOperator
     * @since 1.8
     */
    public static int max(int a, int b) {
        return Math.max(a, b);
    }

    /**
     * Returns the smaller of two {@code int} values
     * as if by calling {@link Math#min(int, int) Math.min}.
     *
     * @param a the first operand
     * @param b the second operand
     * @return the smaller of {@code a} and {@code b}
     * @see java.util.function.BinaryOperator
     * @since 1.8
     */
    public static int min(int a, int b) {
        return Math.min(a, b);
    }

    /** use serialVersionUID from JDK 1.0.2 for interoperability */
    @Native private static final long serialVersionUID = 1360826667806852920L;
}

最后

以上就是瘦瘦方盒为你收集整理的JDK1.8 源码 java.lang.Integer类的全部内容,希望文章能够帮你解决JDK1.8 源码 java.lang.Integer类所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(100)

评论列表共有 0 条评论

立即
投稿
返回
顶部