我是靠谱客的博主 虚心黑猫,最近开发中收集的这篇文章主要介绍浮点数的表示和精度,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

1 浮点数

IEEE754定义了单精度浮点数和双精度数浮点数,即float和double。float有32bit,double有64bit。它们都包括符号位、指数和尾数。

 

 符号位指数尾数
float31(1)30-23(8)22-0(23)
double63(1)62-52(11)51-0(52)

符号位有1bit,0表示正、1表示负。设一个数的指数是e,指数部分的值是bias+e。加上一个bias是为了表示负数。 float的bias是127,double的bias是1023。指数全0或全1有特殊含义,不算正常指数。

  • float的指数部分有8bit,可以取值1~254,减掉127,得到对应的指数范围-126~127。
  • double的指数部分有11位,可以取值1~2046,减掉1023,得到对应的指数范围-1022~1023。

这里的指数是以2为底的,同样尾数也是二进制的。IEEE754要求浮点数以规范形式存储,即小数点前有1位非零数字。对于二进制数,非零数字只有1。所以IEEE754在存储时省略了这个小数点前面的1,只存储小数点后面的位。 所以,所有的浮点数都是 1.xxxxxx * 2^e 表示的,这个 xxxxx 就是底数,1 是省略不写的。

2 误差

看个例子,设:  

 double a=0.2;

在PC上,我们可以看到a对应的存储区数据是:

9A 99 99 99 99 99 C9 3F

PC的数据是小尾的,即低位字节在后,将其写成高位字节在前,得到:

3F C9 99 99 99 99 99 9A

可见符号位为0。指数位是0x3FC,即1020,减掉1023,得到指数-3。尾数是999999999999A。所以完整的数字就是16进制的1.999999999999A乘上2^-3。即:

a=(1+9*(1/16+1/16^2+...+1/16^12)+10/16^13)*2^-3

(1/16+...+1/16^12)可以用等比级数求和公式a1*(1-q^n)/(1-q)计算,其中a1=1/16,q=1/16,n=12,因此:

a=(1+9*(1-1/16^12)/15+10/16^13)*2^-3

用windows的计算器计算上式,得到

a=0.2000 0000 0000 0000 1110 2230 2462 5157

这也不是精确解,但已经可以看到用double表示0.2时存在的误差。这个例子说明在用有限字长的二进制浮点数表示任意实数a可能引入误差。设实数a的指数为e,尾数位数为n,显然:

误差<(1/2^n)*2^e

3 精度

可以把机器精度定义为满足条件

fl(1+ε)>1

的最小浮点数ε。其中fl(1+ε)是1+ε的浮点表示。显然double的机器精度是1/2^52。float的机器精度是1/2^23。 matlab内部采用double,1+1/2^53对double来说就是1,所以1+1/2^53不会大于1。

 

对于规范数来说,因为小数点前默认有个1,所以float的有效数字是24bit,对应8位十进制有效数字; double的有效数字是53bit,对应16位十进制有效数字。

 

4 特殊的浮点数

前面提到浮点数的指数全0或全1有特殊含义,让我们来看看这些特殊的浮点数:

  • 指数和尾数都是全0表示0。根据符号位不同可以分为+0和-0。
  • 指数全0,尾数不为全0,这些数是非规范数,即尾数部分不假设前面存在小数点 前的1。或者说这些数太接近0了,因为指数已经不能再小,所以这些数不能写成规范形式。例如:double数0000 0000 0000 0001的尾数是0 0000 0000 0001,即1/2^52,对应的数是1/(2^52)*2^-1022,即4.9406564584124654e-324。
  • 指数全1,尾数全0表示无穷大,即inf。根据符号位不同可以分为+inf和-inf。
  • 指数全1,尾数不为全0表示NaN,即Not a Number,不是数。尾数最高位为1的NaN被称作QNaN(Quiet NaN)。尾数最高位为0的NaN被称作SNaN(Signalling NaN)。通常用QNaN表示不确定的操作,用SNaN表示无效的操作。

在计算机内部,double就是一个64位数。从0x0000 0000 0000 0000~0xFFFF FFFF FFFF FFFF,每个64位数都对应一个浮点数或NaN。我写了一个小程序,按照64位无符号整数的顺序打印出典型的浮点数。表格的第一列是浮点数的内部表示。 为了便于阅读,按大尾顺序输出。第二列是对应的浮点数。第三列是注释,对于非规范数和规范数给出了由内部表示计算数值的matlab算式。注意在 C/C++中,2^52要写成pow(2.0,52.0)。

 

0000 0000 0000 00000.0000000000000000e+000+0
0000 0000 0000 00014.9406564584124654e-3241/(2^52)*2^-1022
000F FFFF FFFF FFFF2.2250738585072009e-308.5*(1-.5^52)/(1-.5)*2^-1022
0010 0000 0000 00002.2250738585072014e-3081.0*2^-1022
0010 0000 0000 00012.2250738585072019e-308(1+1/2^52)*2^(-1022)
001F FFFF FFFF FFFF4.4501477170144023e-308(1+.5*(1-.5^52)/(1-.5))*2^-1022
0020 0000 0000 00004.4501477170144028e-3081.0*2^-1021
3FF0 0000 0000 00001.0000000000000000e+0001.0
3FF0 0000 0000 00011.0000000000000002e+0001.0+1/(2^52)
3FFF FFFF FFFF FFFF1.9999999999999998e+0001+.5*(1-.5^52)/(1-.5)
4000 0000 0000 00002.0000000000000000e+0001.0*2^1
7FEF FFFF FFFF FFFF1.7976931348623157e+308(1+.5*(1-.5^52)/(1-.5))*2^1023
7FF0 0000 0000 00001.#INF000000000000e+000+INF
7FF0 0000 0000 00011.#SNAN00000000000e+000SNaN
7FF7 FFFF FFFF FFFF1.#SNAN00000000000e+000SNaN
7FF8 0000 0000 00001.#QNAN00000000000e+000QNaN
7FFF FFFF FFFF FFFF1.#QNAN00000000000e+000QNaN
8000 0000 0000 00000.0000000000000000e+000-0
8000 0000 0000 0001-4.9406564584124654e-324-(1/(2^52)*2^-1022)
800F FFFF FFFF FFFF-2.2250738585072009e-308-(.5*(1-.5^52)/(1-.5)*2^-1022)
8010 0000 0000 0000-2.2250738585072014e-308-(1.0*2^-1022)
8010 0000 0000 0001-2.2250738585072019e-308-((1+1/2^52)*2^(-1022))
801F FFFF FFFF FFFF-4.4501477170144023e-308-((1+.5*(1-.5^52)/(1-.5))*2^-1022)
8020 0000 0000 0000-4.4501477170144028e-308-(1.0*2^-1021)
BFF0 0000 0000 0000-1.0000000000000000e+000-1.0
BFFF FFFF FFFF FFFF-1.9999999999999998e+000-(1+.5*(1-.5^52)/(1-.5))
C000 0000 0000 0000-2.0000000000000000e+000-(1.0*2^1)
FFEF FFFF FFFF FFFF-1.7976931348623157e+308-((1+.5*(1-.5^52)/(1-.5))*2^1023)
FFF0 0000 0000 0000-1.#INF000000000000e+000-INF
FFF0 0000 0000 0001-1.#SNAN00000000000e+000SNaN
FFF7 FFFF FFFF FFFF-1.#SNAN00000000000e+000SNaN
FFF8 0000 0000 0000-1.#IND000000000000e+000QNaN
FFFF FFFF FFFF FFFF-1.#QNAN00000000000e+000QNaN

从表中可以看到,double内部表示的设计是很有规律的,按照对应64位数的顺序依次为 +0、正非规范数、正规范数、正无穷大、符号位为正的NaN、-0、负非规范数、负规范数、负无穷大、符号位为负的NaN。

double内部表示的设计保持了浮点数的有序性。即:如果正double数a<正double数b,则a对应的64位无符号整数

4 结束语

float和int都是32bit,但float的尾数只用了23bit。 int的精度高于float,float的表示范围大于int。float牺牲精度换取了更大的表示范围。 double的尾数是52bit,高于32bit的int,所以用dobule表示int不会有精度损失。 double是科学计算的常用类型,了解double的内在和限制,有助于我们更好地使用它。

最后

以上就是虚心黑猫为你收集整理的浮点数的表示和精度的全部内容,希望文章能够帮你解决浮点数的表示和精度所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(43)

评论列表共有 0 条评论

立即
投稿
返回
顶部