概述
E. Paths and Trees
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Little girl Susie accidentally found her elder brother's notebook. She has many things to do, more important than solving problems, but she found this problem too interesting, so she wanted to know its solution and decided to ask you about it. So, the problem statement is as follows.
Let's assume that we are given a connected weighted undirected graph G = (V, E) (here V is the set of vertices, E is the set of edges). The shortest-path tree from vertex u is such graph G1 = (V, E1) that is a tree with the set of edges E1 that is the subset of the set of edges of the initial graph E, and the lengths of the shortest paths from u to any vertex to G and to G1 are the same.
You are given a connected weighted undirected graph G and vertex u. Your task is to find the shortest-path tree of the given graph from vertex u, the total weight of whose edges is minimum possible.
Input
The first line contains two numbers, n and m (1 ≤ n ≤ 3·105, 0 ≤ m ≤ 3·105) — the number of vertices and edges of the graph, respectively.
Next m lines contain three integers each, representing an edge — ui, vi, wi — the numbers of vertices connected by an edge and the weight of the edge (ui ≠ vi, 1 ≤ wi ≤ 109). It is guaranteed that graph is connected and that there is no more than one edge between any pair of vertices.
The last line of the input contains integer u (1 ≤ u ≤ n) — the number of the start vertex.
Output
In the first line print the minimum total weight of the edges of the tree.
In the next line print the indices of the edges that are included in the tree, separated by spaces. The edges are numbered starting from 1 in the order they follow in the input. You may print the numbers of the edges in any order.
If there are multiple answers, print any of them.
Examples
input
Copy
3 3 1 2 1 2 3 1 1 3 2 3
output
Copy
2 1 2
input
Copy
4 4 1 2 1 2 3 1 3 4 1 4 1 2 4
output
Copy
4 2 3 4
Note
In the first sample there are two possible shortest path trees:
- with edges 1 – 3 and 2 – 3 (the total weight is 3);
- with edges 1 – 2 and 2 – 3 (the total weight is 2);
And, for example, a tree with edges 1 – 2 and 1 – 3 won't be a shortest path tree for vertex 3, because the distance from vertex 3 to vertex 2 in this tree equals 3, and in the original graph it is 1.
【题意】
给你一个图,然后给你一个点,求一个图,包含这个点到其他点的最短路的边的图。
要求这个图的边权和最小
【方法】
跑dijkstra,如果dis相同,选择小的边,,和普通的最短路相比,多了一个变量记录这条边的序号,,注意边*2,,
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
int Num;
char CH[20];
const int inf=0x3f3f3f3f;
struct node
{
int num,v,w,next;
}edge[600010];
struct node2
{
int u;
ll d;
bool operator <(const node2 a)const
{
return a.d<d;
}
};
priority_queue<node2> qu;
node2 A;
int T,t,n,m,Head[300010],tot;
ll dis[300010],cost[300010],use[300010],INF=1e16;
bool vis[300010],vis2[300010];
void add(int u,int v,int w,int num)
{
edge[tot].num=num;
edge[tot].v=v;
edge[tot].w=w;
edge[tot].next=Head[u];
Head[u]=tot++;
}
int main()
{
int i,j,k,u,v,w,num;
ios::sync_with_stdio(false);
ll ans;
cin>>n>>m;
memset(Head,-1,sizeof(Head));
for(i=1;i<=m;i++)
{
cin>>u>>v>>w;
add(u,v,w,i);
add(v,u,w,i);
}
for(i=1;i<=n;i++)
dis[i]=cost[i]=INF;
cin>>u;
dis[u]=0;
cost[u]=0;
A.u=u;
A.d=0;
qu.push(A);
while(!qu.empty())
{
A=qu.top();
qu.pop();
u=A.u;
if(vis[u])
continue;
vis[u]=1;
vis2[use[u]]=1;
for(i=Head[u];i!=-1;i=edge[i].next)
{
v=edge[i].v;
w=edge[i].w;
num=edge[i].num;
if(dis[u]+w<dis[v])
{
dis[v]=dis[u]+w;
cost[v]=w;
use[v]=num;
A.u=v;A.d=dis[v];
qu.push(A);
}
else if(dis[u]+w==dis[v] && w<cost[v])
{
cost[v]=w;
use[v]=num;
}
}
}
ans=0;
for(i=1;i<=m;i++)
if(vis2[i])
ans+=edge[i*2-1].w;
cout<<ans<<endl;
if(ans>0)
{
for(i=1;i<=m;i++)
if(vis2[i])
cout<<i<<" ";
cout<<endl;
}
return 0;
}
最后
以上就是疯狂蜡烛为你收集整理的图的最短路生成树的全部内容,希望文章能够帮你解决图的最短路生成树所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复